2 resultados para Water mass variations

em Instituto Politécnico do Porto, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.