3 resultados para Wages and Labor Productivity

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Versão editor: http://www.isegi.unl.pt/docentes/acorreia/documentos/European_Challenge_KM_Innovation_2004.pdf

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article evaluates the sustainability and economic potential of microalgae grown in brewery wastewater for biodiesel and biomass production. Three sustainability and two economic indicators were considered in the evaluation within a life cycle perspective. For the production system the most efficient process units were selected. Results show that harvesting and oil separation are the main process bottlenecks. Microalgae with higher lipid content and productivity are desirable for biodiesel production, although comparable to other biofuel’s feedstock concerning sustainability. However, improvements are still needed to reach the performance level of fossil diesel. Profitability reaches a limit for larger cultivation areas, being higher when extracted biomass is sold together with microalgae oil, in which case the influence of lipid content and areal productivity is smaller. The values of oil and/or biomass prices calculated to ensure that the process is economically sound are still very high compared with other fuel options, especially biodiesel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.