9 resultados para Understanding by Design
em Instituto Politécnico do Porto, Portugal
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a uniform multiprocessor platform where each task may access at most one of |R| shared resources and at most once by each job of that task. The resources have to be accessed in a mutually exclusive manner. We propose an algorithm, GIS-vpr, which offers the guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that allows a task to migrate only when it accesses or releases a resource, then our algorithm also meets the deadlines with the same restriction on the task migration, if given processors 4 + 6|R| times as fast. The proposed algorithm, by design, limits the number of migrations per job to at most two. To the best of our knowledge, this is the first result for resource sharing on uniform multiprocessors with proven performance guarantee.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
OCEANS, 2001. MTS/IEEE Conference and Exhibition (Volume:2 )
Resumo:
A Box–Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macroalgae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacitywas studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10–40ºC for temperature, 3.0–5.0 for pH and 50–150mgL−1 for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70mgg−1 and corresponds to the following values of those variables: temperature = 40ºC, pH= 5.0 and initial Cu(II) concentration = 150mgL−1.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.