2 resultados para UDP-sugars
em Instituto Politécnico do Porto, Portugal
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
This study performs a sustainability evaluation of biodiesel from microalga Chlamydomonas sp. grown in 20 % (v/v) of brewery’s wastewater, blended with pentose sugars (xylose, arabinose or ribose resulting from the hydrolysis of brewer’s spent grains (BSG). The life cycle steps considered for the study are: microalgae cultivation, biomass processing and lipids extraction at the brewery site, and its conversion to biodiesel at a dedicated external biofuel’s plant. Three sustainability indicators (LCEE, FER and GW) were considered and calculated using experimental data. Literature data was used, whenever necessary, to complement life cycle data, thus allowing a more accurate sustainability evaluation. A comparative analysis of the biodiesel life cycle steps was also conducted, with the main goal of identifying which steps need to be improved. Results show that biomass processing, especially cell harvesting, microalgae cultivation, and lipids extraction are the main process bottlenecks. It is also analysed the influence on the microalgae biodiesel sustainability of adding each pentose sugar to the cultivation media, concluding that it strongly influences the biomass and lipid productivity. In particular, the addition of xylose is preferable in terms of lipid productivity, but from a sustainability point of view, ribose is the best, though the difference from xylose is not significant. Nevertheless, culture without pentose addition presents the best sustainability results.