13 resultados para Typical load profiles
em Instituto Politécnico do Porto, Portugal
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
A forte preocupação ambiental, nomeadamente a emissão de Gases com Efeito de Estufa (GEE), aliada à constante ameaça do esgotamento dos combustíveis de origem fóssil, leva à necessidade de consumir energia de forma mais eficiente. Neste sentido, surge a promoção da eficiência energética nos diversos sectores consumidores de energia em todo o Mundo. Sabendo que passamos mais de 80% do nosso tempo dentro de edifícios, e que cerca de 40% da energia mundial é consumida nos mesmos [ADENE], é importante operar no sentido de promover a utilização racional de energia e incentivar ao consumo eficiente da mesma nos edifícios. Apesar do esforço que tem sido realizado a nível nacional, no sentido de melhorar a eficiência energética em edifícios de serviços, através da implementação de legislação diversa e de vários programas de incentivo, existem ainda várias lacunas a serem colmatadas e muito trabalho a fazer nesse sentido. Por tudo isto, e principalmente por ter constantemente em mente premissas como “a energia mais barata é aquela que não se consome” ou “não podemos gerir aquilo que não medimos”, surgiu a ideia de realizar esta dissertação, onde inicialmente através de dados provenientes de telecontagem se desenvolve uma tentativa de padronização/tipificação do consumo eléctrico em seis edifícios de escritórios, identificando-se assim algumas situações anómalas em diversos diagramas de carga construídos. Relaciona-se também o consumo eléctrico dos seis edifícios com algumas variáveis exógenas, de modo a perceber a influência das mesmas no consumo eléctrico de cada edifício. Numa vertente mais prática, foram identificadas e quantificadas potenciais medidas de melhoria, comportamentais e técnicas, num dos edifícios em estudo, de modo a poder contribuir para a redução do consumo energético do mesmo. Espera-se que este trabalho, possa eventualmente constituir uma ajuda na caracterização de consumos e detecção de medidas de melhoria em edifícios de escritórios, alcançando a eficiência energética neste tipo de instalações e facilitando assim o trabalho de vários profissionais do sector. Pretende-se igualmente demonstrar a importância da eficiência energética na gestão do uso da energia eléctrica em edifícios, e efectuar um paralelo entre a energia economizada por meio da implementação de medidas/acções de uso racional e eficiente, com a redução da queima de combustíveis fosseis na geração de energia eléctrica e a sua consequente redução nas emissões de dióxido de carbono (CO2), com o objectivo final de melhorar a qualidade de vida no nosso planeta.
Resumo:
Nos últimos anos o consumo de energia elétrica produzida a partir de fontes renováveis tem aumentado significativamente. Este aumento deve-se ao impacto ambiental que recursos como o petróleo, gás, urânio, carvão, entre outros, têm no meio ambiente e que são notáveis no diaa- dia com as alterações climáticas e o aquecimento global. Por sua vez, estes recursos têm um ciclo de vida limitado e a dada altura tornar-se-ão escassos. A preocupação de uma melhoria contínua na redução dos impactos ambientais levou à criação de Normas para uma gestão mais eficiente e sustentável do consumo de energia nos edifícios. Parte da eletricidade vendida pelas empresas de comercialização é produzida através de fontes renováveis, e com a recente publicação do Decreto de Lei nº 153/2014 de 20 outubro de 2014 que regulamenta o autoconsumo, permitindo que também os consumidores possam produzir a sua própria energia nas suas residências para reduzir os custos com a compra de eletricidade. Neste contexto surgiram os edifícios inteligentes. Por edifícios inteligentes entende-se que são edifícios construídos com materiais que os tornam mais eficientes, possuem iluminação e equipamentos elétricos mais eficientes, e têm sistemas de produção de energia que permitem alimentar o próprio edifício, para um consumo mais sustentado. Os sistemas implementados nos edifícios inteligentes visam a monitorização e gestão da energia consumida e produzida para evitar desperdícios de consumo. O trabalho desenvolvido visa o estudo e a implementação de Redes Neuronais Artificiais (RNA) para prever os consumos de energia elétrica dos edifícios N e I do ISEP/GECAD, bem como a previsão da produção dos seus painéis fotovoltáicos. O estudo feito aos dados de consumo permitiu identificar perfis típicos de consumo ao longo de uma semana e de que forma são influenciados pelo contexto, nomeadamente, com os dias da semana versus fim-de-semana, e com as estações do ano, sendo analisados perfis de consumo de inverno e verão. A produção de energia através de painéis fotovoltaicos foi também analisada para perceber se a produção atual é suficiente para satisfazer as necessidades de consumo dos edifícios. Também foi analisada a possibilidade da produção satisfazer parcialmente as necessidades de consumos específicos, por exemplo, da iluminação dos edifícios, dos seus sistemas de ar condicionado ou dos equipamentos usados.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
Resumo:
A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.