4 resultados para Trigger circuits.

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.