3 resultados para Transportation buildings
em Instituto Politécnico do Porto, Portugal
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
A very important part of the globally produced energy is consumed in buildings, being an important share frequently used in the HVAC systems. These ones are increasing both in performance and in complexity, taking advantage from the use of the recent advances in mechanical and power electronic devices, particularly in the speed variation field. However the improved efficiency only occurs while the HVAC unit is working in the conditions specified by the manufacturer, otherwise the energy consumption raises to values considerably higher than the nominal ones. The adequate maintenance enforces the system to run on its nominal performance and the contrary has undesirable impact both in the performance and in the system expected life time. Therefore, HVAC field maintenance assumes a very important role in the global building sustainability concept. This work presents some results of an incorrect use of HVAC and the associated electric energy overconsumption that can assume values 50% higher than those that occur when the installation is operated according to the adequate maintenance plan.