40 resultados para Transmission system operators

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the impact of distributed generation in the transmission expansion planning will be simulated through the performance of an optimization process for three different scenarios: the first without distributed generation, the second with distributed generation equivalent to 1% of the load, and the third with 5% of distributed generation. For modeling the expanding problem the load flow linearized method using genetic algorithms for optimization has been chosen. The test circuit used is a simplification of the south eastern Brazilian electricity system with 46 buses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A operação dos Mercados de Energia Eléctrica passa, actualmente, por uma profunda reestruturação, com o principal foco nas transacções do sistema de transmissão entre os diferentes agentes. Tendo isso em conta, o serviço de transmissão neste novo esquema de funcionamento do Mercado de Energia Eléctrica deve ser provido de máxima eficiência económica, atendendo sempre às restrições de segurança do sistema. Com esta reorganização do sector eléctrico da última década surgiu também a necessidade de rever os modelos tradicionais de optimização económica do Sistema Eléctrico de Energia, como por exemplo o despacho e prédespacho (unit commitment). A reestruturação e liberalização dos mercados de energia eléctrica trouxeram novas restrições a alguns dos problemas tradicionais associados aos Sistemas Eléctricos de Energia. Um desses problemas é o Escalonamento da Produção de Energia Eléctrica, que no contexto actual, implica quase sempre negociação entre os diferentes agentes do mercado e consequentemente reescalonamento. A maioria dos métodos usados para a resolução do problema não permitem reformular o prédespacho, algo para que a Programação Lógica por Restrições é extremamente adequada. O trabalho desenvolvido nesta dissertação visa criar uma aplicação computacional com base na Programação Lógica por Restrições, através da plataforma ECLiPSe, para resolver o problema do Escalonamento da Produção de Energia Eléctrica dos grupos térmicos, demonstrando assim a versatilidade e flexibilidade deste tipo de programação aplicada a problema combinatoriais deste género.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A alta e crescente participação da energia eólica na matriz da produção traz grandes desafios aos operadores do sistema na gestão da rede e planeamento da produção. A incerteza associada à produção eólica condiciona os processos de escalonamento e despacho económico dos geradores térmicos, uma vez que a produção eólica efetiva pode ser muito diferente da produção prevista. O presente trabalho propõe duas metodologias de otimização do escalonamento de geradores térmicos baseadas em Programação Inteira Mista. Pretende-se encontrar soluções de escalonamento que minimizem as influências negativas da integração de energia eólica no sistema elétrico. Inicialmente o problema de escalonamento de geradores é formulado sem considerar a integração da energia eólica. Posteriormente foi considerada a penetração da energia eólica no sistema elétrico. No primeiro modelo proposto, o problema é formulado como um problema de otimização estocástico. Nesta formulação todos os cenários de produção eólica são levados em consideração no processo de otimização. No segundo modelo, o problema é formulado como um problema de otimização determinística. Nesta formulação, o escalonamento é feito para cada cenário de produção eólica e no fim determina-se a melhor solução por meio de indicadores de avaliação. Foram feitas simulações para diferentes níveis de reserva girante e os resultados obtidos mostraram que a alta participação da energia eólica na matriz da produção põe em causa a segurança e garantia de produção devido às características volátil e intermitente da produção eólica e para manter os mesmos níveis de segurança é preciso dispor no sistema de capacidade reserva girante suficiente capaz de compensar os erros de previsão.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.