2 resultados para Transition metal-free
em Instituto Politécnico do Porto, Portugal
Resumo:
O processo de hidrofugação é definido como um tratamento efetuado com gorduras e agentes químicos, nomeadamente polímeros e acrílicos que dão características de lubrificação e propriedades hidrofóbicas ao material, cujas etapas são adicionadas na fase de recurtume. Um dos objetivos principais foi a obtenção de um couro com alto grau hidrofóbico, isto é um couro com baixo poder de absorção da água, resistência a sua penetração e conservação da permeabilidade ao vapor de água, sem a utilização do sal de crómio na fase de fixação, e mais pelas problemáticas ambientais que existem na atualidade com o uso deste metal no mundo dos couros. É de salientar que, o único parâmetro que foi possível analisar, de acordo com a disponibilidade do laboratório foi a percentagem de absorção da água. Portanto, para este trabalho escrito foram desenhadas uma série de ensaios, onde se testaram inúmeros produtos utilizados na indústria de produção dos couros, alterando-se fatores de temperatura, dosagem, posição dos produtos aplicados, tempos, entre outros parâmetros, de modo a obter um couro com melhores resultados na percentagem de absorção. A hidrofugação é um processo bastante delicado e mais quando se tenta produzir um couro isento de metais e com alto poder hidrofóbico. Os resultados obtidos experimentalmente apontam para uma percentagem de absorção de cerca de 30% para espaços de tempo de 10 minutos, utilizando sempre sais de alumínio na etapa de fixação, pelo que ainda se requer mais investigação para obter um couro wet-white sem adição de sais metálicas e com alto poder de absorção.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.