3 resultados para Topology Preservation

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigallocatechin gallate (EGCG), an antioxidant with several pharmacological and biological activities, was encapsulated in carbohydrate particles to preserve its antioxidant properties and improve its bioavailability. Gum arabic–maltodextrin particles loaded with EGCG (EGCG/P) were successfully produced by homogenization and spray-drying, with an EGCG loading efficiency of 96 ± 3%. Spray-dried particles are spherical or corrugated and polydisperse with diameters less than 20 m. The particles in aqueous suspension revealed two main populations, with mean average diameters of 40 nm and 400 nm. Attenuated total reflection-infrared spectroscopy (ATR-IR) confirmed that EGCG was incorporated in the carbohydrate matrix by intermolecular interactions, maintaining its chemical integrity. Atomic force microscopy imaging proved the particle spherical shape and size. The present study demonstrates that the carbohydrate matrix is able to preserve EGCG antioxidant properties, as proof of concept to be used as polymeric drug carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of disseminating data from an arbitrary source node to all other nodes in a distributed computer system, like Wireless Sensor Networks (WSNs). We assume that wireless broadcast is used and nodes do not know the topology. We propose new protocols which disseminate data faster and use fewer broadcasts than the simple broadcast protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.