2 resultados para Time-domain simulations
em Instituto Politécnico do Porto, Portugal
Resumo:
In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.
Resumo:
This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.