2 resultados para Squeezed States
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper aims at putting into perspective the recent, post 9/11 debate on the United States‘ alleged exceptionalism and its impact on the definition of American foreign policy. It reminds the readers that the United States was born as a result of a similar debate, at a time when a crucial choice for its future was to be made. Indeed, the Founding Fathers discarded the revolutionary idea that America was altogether different from other (European) nations and, as such, could succeed in saving republicanism and concentrate on domestic affairs. As Gordon Wood and Harvey Mansfield have shown, the 1787 version of republicanism stood as a departure from its earlier version, and such a change was necessary to the creation of a full-fledged federation, therefore paving the way to the current powerful Federal Republic. The early failure of the exceptionalist creed did not cause its disappearance, as the contemporary form of exceptionalism demonstrates, but created conditions that made an enduring and powerful influence very difficult.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.