22 resultados para Spherical parameterization
em Instituto Politécnico do Porto, Portugal
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.
Resumo:
O trabalho realizado teve como objetivo principal analisar os ajustes posturais antecipatórios que ocorrem durante o desempenho de uma tarefa motora fundamental (apanhar), em crianças entre os nove e os dez anos de idade, residentes no Porto e que apresentam um desenvolvimento normal com recurso ao sistema de captura e parametrização do movimento em tempo real BioStage ®. Como objetivo secundário pretendeu-se perceber de que forma este sistema pode ser uma ferramenta importante na prática clínica da terapia ocupacional. Para tal, realizou-se um estudo de natureza quantitativa e de carácter descritivo e recorreu-se a uma amostra de 12 crianças, utilizando o método de amostragem não probabilística por conveniência. A recolha de dados efetuou-se no sistema BioStage ® e foi pedido que realizassem quatro itens do subteste 5 do Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) – receção bi e unilateral de uma bola com e sem ressalto no chão. Os resultados obtidos sugerem que as raparigas e as crianças mais novas demonstram ter menos estabilidade do tronco e pélvis ou menor capacidade de prever a trajetória da bola e que a receção unilateral foi mais difícil de efetuar pela maioria das crianças. Para concluir, refere-se que o BioStage ® mostra-se útil e é uma mais-valia, contribuindo de forma positiva para a prática da terapia ocupacional, uma vez que pode ser considerado como um complemento ao processo de avaliação pois faz uma análise detalhada, precisa e objetiva e identifica aspetos de difícil mensuração através da observação.
Resumo:
O estudo do comportamento motor, nomeadamente as áreas do desenvolvimento e controlo motor, têm permitido fundamentar a prática da terapia ocupacional, proporcionando um entendimento mais abrangente de aspetos relacionados com a análise de movimento. Todavia, o processo de análise de atividades, por norma, é realizado de forma empírica, principalmente devido à carência de métodos que avaliem de forma objetiva e precisa o comportamento motor e, consequentemente, os movimentos realizados no desempenho de atividades. Neste sentido, este estudo pretendeu encontrar padrões motores em crianças entre os nove e os dez anos de idade, com desenvolvimento normal, que traduzam o desempenho de uma tarefa motora funcional, com recurso ao sistema de captura e parametrização do movimento em tempo real BioStage®. Por outro lado, tentou-se perceber se o sistema poderia revelar-se um contributo para a prática da terapia ocupacional, possibilitando a obtenção de dados que possam ser utilizados na clínica. As tarefas selecionadas para análise foram os cinco lançamentos propostos pelo Bruininks-Oseretsky Test of Motor Proficiency, que consistem no lançamento por baixo uni e bilateral, lançamento ao chão uni e bilateral e lançamento ao alvo (unilateral). Os resultados encontrados apontam que aos nove e dez anos existem padrões motores similares entre as crianças, no entanto ainda se nota uma ligeira variabilidade no comportamento. Aferiu-se, também, que a idade, sexo e prática de exercício físico podem influenciar os padrões utilizados, estando de acordo com a literatura. O sistema BioStage® mostrou-se uma ferramenta eficaz para a análise de movimento, providenciando informação detalhada sobre o comportamento motor das crianças, no decorrer das tarefas. Deste modo, pode ser uma mais-valia para a prática da terapia ocupacional, podendo contribuir para uma análise de atividades mais precisa, objetiva e fundamentada.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
Resumo:
Neste trabalho é desenvolvida uma bancada didáctica que permite simular o funcionamento de um sistema de microgeração. A bancada inclui uma máquina síncrona responsável pela geração de energia eléctrica acoplada a uma máquina de indução que simula a máquina primária. A máquina de indução é controlada por um sistema electrónico de controlo de potência (variador de velocidade) que permite manter constante a velocidade de rotação e consequentemente a frequência da tensão gerada pela máquina síncrona. Por sua vez, a excitação da máquina síncrona é controla por uma fonte de tensão externa. A parametrização e controlo do variador de velocidade, assim como o controlo da fonte de tensão externa, são feitos a partir dum software que corre num PC, que também monitoriza a tensão gerada pela máquina síncrona. Este software é ainda responsável pela interface com o utilizador. O software desenvolvido permite manter as características da tensão gerada pela máquina síncrona independentemente da carga imposta.
Resumo:
Epigallocatechin gallate (EGCG), an antioxidant with several pharmacological and biological activities, was encapsulated in carbohydrate particles to preserve its antioxidant properties and improve its bioavailability. Gum arabic–maltodextrin particles loaded with EGCG (EGCG/P) were successfully produced by homogenization and spray-drying, with an EGCG loading efficiency of 96 ± 3%. Spray-dried particles are spherical or corrugated and polydisperse with diameters less than 20 m. The particles in aqueous suspension revealed two main populations, with mean average diameters of 40 nm and 400 nm. Attenuated total reflection-infrared spectroscopy (ATR-IR) confirmed that EGCG was incorporated in the carbohydrate matrix by intermolecular interactions, maintaining its chemical integrity. Atomic force microscopy imaging proved the particle spherical shape and size. The present study demonstrates that the carbohydrate matrix is able to preserve EGCG antioxidant properties, as proof of concept to be used as polymeric drug carrier.
Resumo:
Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power ˛ which is the order of the chemical reaction occurring at surface. We assumed α= 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.