8 resultados para Spectral Algebra
em Instituto Politécnico do Porto, Portugal
Resumo:
This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a ShimadzuUV–VIS 2550, which is in theworld the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.
Resumo:
Linear Algebra—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Linear Algebra. Vector spaces are presented first, and linear transformations are reviewed secondly. Matrices and Linear systems are presented. Determinants and Basic geometry are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a Shimadzu UV–VIS 2550, which is in the world the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
This paper presents a mechanically verified implementation of an algorithm for deciding the equivalence of Kleene algebra terms within the Coq proof assistant. The algorithm decides equivalence of two given regular expressions through an iterated process of testing the equivalence of their partial derivatives and does not require the construction of the corresponding automata. Recent theoretical and experimental research provides evidence that this method is, on average, more efficient than the classical methods based on automata. We present some performance tests, comparisons with similar approaches, and also introduce a generalization of the algorithm to decide the equivalence of terms of Kleene algebra with tests. The motivation for the work presented in this paper is that of using the libraries developed as trusted frameworks for carrying out certified program verification.
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.