19 resultados para Specific Leaf Weight
em Instituto Politécnico do Porto, Portugal
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 lg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by twodimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 lg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 lg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in abundance or were absent in the gels of the simultaneous exposure to 10 and 100 lg/l MC-LR/CYN. In the latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and may contribute to the identification of potential protein markers of exposure and proteins that may confer tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., presence of allergenic proteins).
Resumo:
Context: Inclusion of antioxidants in topical formulations can contribute to minimize oxidative stress in the skin, which has been associated with photoaging, several dermatosis and cancer. Objective: A Castanea sativa leaf extract with established antioxidant activity was incorporated into a semisolid surfactant-free formulation. The objective of this study was to perform a comprehensive characterization of this formulation. Materials and methods: Physical, microbiological and functional stability were evaluated during 6 months storage at 20 °C and 40 °C. Microstructure elucidation (cryo-SEM), in vitro release and in vivo moisturizing effect (Corneometer® CM 825) were also assessed. Results and discussion: Minor changes were observed in the textural and rheological properties of the formulation when stored at 20 °C for 6 months and the antioxidant activity of the plant extract remained constant throughout the storage period. Microbiological quality was confirmed at the end of the study. Under accelerated conditions, higher modifications of the evaluated parameters were observed. Cryo-SEM analysis revealed the presence of oil droplets dispersed into a gelified external phase. The release rate of the antioxidant compounds (610 ± 70 µgh−0.5) followed Higuchi model. A significant in vivo moisturizing effect was demonstrated, that lasted at least 4 h after product’s application. Conclusion: The physical, functional and microbiological stability of the antioxidant formulation was established. Specific storage conditions should be recommended considering the influence of temperature on the stability. A skin hydration effect and good skin tolerance were also found which suggests that this preparation can be useful in the prevention or treatment of oxidative stress-mediated dysfunctions.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Na procura por uma solução de valorização dos resíduos gerados pela indústria de curtumes, o presente trabalho tem como principais objectivos a preparação de adsorventes a partir de resíduos desta actividade e a avaliação do seu desempenho na adsorção de poluentes. Para atingir este objectivo, inicialmente procedeu-se à carbonização das aparas de couro wet-white à temperatura de 800 ºC. Seguidamente, os carbonizados foram activados por activação química, tendo sido o hidróxido de potássio o agente activante escolhido. As razões mássicas hidróxido de potássio:precursor usadas na impregnação, foram iguais a 0,5:1 e 1:1. Para a razão 0,5:1, as temperaturas de activação escolhidas foram 700 e 800 ºC. Para a razão de impregnação 1:1, as temperaturas de activação usadas foram 700, 800 e 900 ºC. Para uma avaliação preliminar da capacidade de adsorção dos carvões activados produzidos, efectuou-se a determinação do número de azul de metileno. Este teste provou serem as amostras activadas a 900 ºC as que apresentaram melhores resultados (número de azul de metileno: 24g/100g) e as amostras activadas a 700 ºC, as que apresentaram menor capacidade de adsorção (1g/100g, para a razão de 0,5:1 e 7g/100g, para a razão de 1:1). Verificou-se também que amostras preparadas com iguais condições de activação (temperatura de activação e razão de impregnação), mas produzidas a partir de carbonizado de diferentes granulometrias, apresentaram diferentes desempenhos na adsorção de azul de metileno. As propriedades texturais dos carvões activados produzidos foram obtidas pela determinação das isotérmicas de adsorção de azoto a 77 K. Para tal, selecionaram-se quatro amostras: dois carvões activados a 800 ºC, com uma razão de impregnação de 1:1 e dois carvões activados a 900 ºC, com a mesma razão de impregnação, obtidos a partir de carbonizados com diferentes granulometrias. As isotérmicas obtidas são características de materiais essencialmente microporosos, com mesoporos e macroporos. Verificou-se também que a granulometria do precursor carbonizado influencia as propriedades texturais dos carvões activados produzidos. Para as temperaturas de activação usadas, 800 e 900 ºC, os carvões activados preparados a partir de carbonizado de menor granulometria apresentam melhores propriedades texturais. O carvão activado que apresentou maior área superficial específica foi obtido a 900 ºC, a partir de carbonizado finamente moído (SBET = 1475 m2/g). Determinadas as propriedades texturais dos carvões activados produzidos, realizaram-se ensaios de adsorção do corante CORIACIDE DARK BROWN VR, usado na indústria de curtumes com um carvão activado produzido no âmbito deste trabalho e com um carvão activado comercial NORIT ROW 0,8. A amostra de carvão activado produzida a partir de resíduos de wet-white escolhida para estes ensaios foi o carvão activado a 800 ºC, à razão de 1:1, a partir de carbonizado finamente moído (ww_800_1:1_carb.moído). Verificou-se que as quantidades adsorvidas pela amostra ww_800_1:1_carb.moído variaram entre os valores 7,47 e 32,07 mgcorante/gcarvão activado. Quanto ao carvão activado comercial, as quantidades adsorvidas situaram-se entre 8,95 e 69,13 mgcorante/gcarvão activado. Assim, conclui-se que o carvão activado comercial apresentou melhor desempenho na adsorção do corante da indústria de curtumes. Os carvões activados obtidos revelaram-se materiais essencialmente microporosos, com capacidade de adsorção de poluentes, como por exemplo corantes, no entanto o seu desempenho seria mais eficaz na adsorção de pequenas moléculas devido ao elevado volume de microporos que apresentaram.
Resumo:
Molecularly imprinted polymers (MIP) were used as potentiometric sensors for the selective recognition and determination of chlormequat (CMQ). They were produced after radical polymerization of 4-vinyl pyridine (4-VP) or methacrylic acid (MAA) monomers in the presence of a cross-linker. CMQwas used as template. Similar nonimprinted (NI) polymers (NIP) were produced by removing the template from reaction media. The effect of kind and amount of MIP or NIP sensors on the potentiometric behavior was investigated. Main analytical features were evaluated in steady and flow modes of operation. The sensor MIP/4-VP exhibited the best performance, presenting fast near-Nernstian response for CMQover the concentration range 6.2×10-6 – 1.0×10-2 mol L-1 with detection limits of 4.1×10-6 mol L-1. The sensor was independent from the pH of test solutions in the range 5 – 10. Potentiometric selectivity coefficients of the proposed sensors were evaluated over several inorganic and organic cations. Results pointed out a good selectivity to CMQ. The sensor was applied to the potentiometric determination of CMQin commercial phytopharmaceuticals and spiked water samples. Recoveries ranged 96 to 108.5%.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
Three commonly consumed and commercially valuable fish species (sardine, chub and horse mackerel) were collected from the Northeast and Eastern Central Atlantic Ocean in Portuguese waters during one year. Mercury, cadmium, lead and arsenic amounts were determined in muscles using graphite furnace and cold vapour atomic absorption spectrometry. Maximum mean levels of mercury (0.1715 ± 0.0857 mg/kg, ww) and arsenic (1.139 ± 0.350 mg/kg, ww) were detected in horse mackerel. The higher mean amounts of cadmium (0.0084 ± 0.0036 mg/kg, ww) and lead (0.0379 ± 0.0303 mg/kg, ww) were determined in chub mackerel and in sardine, respectively. Intra- and inter-specific variability of metals bioaccumulation was statistically assessed and species and length revealed to be the major influencing biometric factors, in particular for mercury and arsenic. Muscles present metal concentrations below the tolerable limits considered by European Commission Regulation and Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). However, estimation of non-carcinogenic and carcinogenic health risks by the target hazard quotient and target carcinogenic risk, established by the US Environmental Protection Agency, suggests that these species must be eaten in moderation due to possible hazard and carcinogenic risks derived from arsenic (in all analyzed species) and mercury ingestion (in horse and chub mackerel species).
Resumo:
The development of neonatal intensive care has led to an increase in the prevalence of children with low birth weight and associated morbidity. The objectives of this study are to verify (1) The association between birth weight (BW) and neuromotor performance? (2) Is the neuromotor performance of twins within the normal range? (3) Are intra-pair similarities in neuromotor development of Monozygotic (MZ) and Disygotic (DZ) twins of unequal magnitude? The sample consisted of 191 children (78 MZ and 113 DZ), 8.9+3.1 years of age and with an average BW of 2246.3+485.4g. In addition to gestational characteristics, sports participation and Zurich Neuromotor Assessment (ZNA) were observed at childhood age. The statistical analysis was carried out with software SPSS 18.0, the STATA 10 and the ZNA performance scores. The level of significance was 0.05. For the neuromotor items high intra and inter-investigator reliabilities were obtained (0.793
Resumo:
The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.
Resumo:
Folk medicine is a relevant and effective part of indigenous healthcare systems which are, in practice, totally dependent on traditional healers. An outstanding coincidence between indigenous medicinal plant uses and scientifically proved pharmacological properties of several phytochemicals has been observed along the years. This work focused on the leaves of a medicinal plant traditionally used for therapeutic benefits (Angolan Cymbopogon citratus), in order to evaluate their nutritional value. The bioactive phytochemical composition and antioxidant activity of leaf extracts prepared with different solvents (water, methanol and ethanol) were also evaluated. The plant leaves contained ~60% of carbohydrates, protein (~20%), fat (~5%), ash (~4%) and moisture (~9%). The phytochemicals screening revealed the presence of tannins, flavonoids, and terpenoids in all extracts. Methanolic extracts also contained alkaloids and steroids. Several methods were used to evaluate total antioxidant capacity of the different extracts (DPPH; NO; and H2O2 scavenging assays, reducing power, and FRAP). Ethanolic extracts presented a significantly higher antioxidant activity (p < 0.05) except for FRAP, in which the best results were achieved by the aqueous extracts. Methanolic extracts showed the lowest radical scavenging activities for both DPPH; and NO; radicals.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.