2 resultados para Special operations (Military science)

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.