7 resultados para Spatial data infrastructure

em Instituto Politécnico do Porto, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a low cost distributed system intended to increase the positioning accuracy of outdoor navigation systems based on the Global Positioning System (GPS). Since the accuracy of absolute GPS positioning is insufficient for many outdoor navigation tasks, another GPS based methodology – the Differential GPS (DGPS) – was developed in the nineties. The differential or relative positioning approach is based on the calculation and dissemination of the range errors of the received GPS satellites. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that, first, establishes Internet links with remote DGPS sources and, then, performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate outdoor navigation tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language-free adaptation of a 2-back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM-based random effects procedures and t-tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self-corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non-clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block-design paradigms.