5 resultados para Sound laboratories
em Instituto Politécnico do Porto, Portugal
Resumo:
Interactive products are appealing objects in a technology-driven society and the offer in the market is wide and varied. Most of the existing interactive products only provide either light or sound experiences. Therefore, the goal of this project was to develop a product aimed for children combining both features. This project was developed by a team of four thirdyear students with different engineering backgrounds and nationalities during the European Project Semester at ISEP (EPS@ISEP) in 2012. This paper presents the process that led to the development of an interactive sound table that combines nine identical interaction blocks, a control block and a sound block. Each interaction block works independently and is composed of four light emitting diodes (LED) and one infrared (IR) sensor. The control is performed by an Arduino microcontroller and the sound block includes a music shield and a pair of loud speakers. A number of tests were carried out to assess whether the controller, IR sensors, LED, music shield and speakers work together properly and if the ensemble was a viable interactive light and sound device for children.
Resumo:
Commonly, when a weblab is developed to support remote experiments in sciences and engineering courses, a particular hardware/software architecture is implemented. However, the existence of several technological solutions to implement those architectures difficults the emergence of a standard, both at hardware and software levels. While particular solutions are adopted assuming that only qualified people may implement a weblab, the control of the physical space and the power consumption are often forgotten. Since controlling these two previous aspects may increase the quality of the weblab hosting the remote experiments, this paper proposes the useof a new layer implemented by a domotic system bus with several devices (e.g. lights, power sockets, temperature sensors, and others) able to be controlled through the Internet. We also provide a brief proof-of-concept in the form of a weblab equipped with a simple domotic system usually implemented in smart houses. The added value to the remote experiment hosted at the weblab is also identified in terms of power savings and environment conditions.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
Remote Laboratories or WebLabs constitute a first-order didactic resource in engineering faculties. However, in many cases, they lack a proper software design, both in the client and server side, which degrades their quality and academic usefulness. This paper presents the main characteristics of a Remote Laboratory, analyzes the software technologies to implement the client and server sides in a WebLab, and correlates these technologies with the characteristics to facilitate the selection of a technology to implement a WebLab. The results obtained suggest the adoption of a Service Oriented Laboratory Architecture-based approach for the design of future Remote Laboratories so that client-agnostic Remote Laboratories and Remote Laboratory composition are enabled. The experience with the real Remote Laboratory, WebLab-Deusto, is also presented.
Resumo:
It is well recognized that professional musicians are at risk of hearing damage due to the exposure to high sound pressure levels during music playing. However, it is important to recognize that the musicians’ exposure may start early in the course of their training as students in the classroom and at home. Studies regarding sound exposure of music students and their hearing disorders are scarce and do not take into account important influencing variables. Therefore, this study aimed to describe sound level exposures of music students at different music styles, classes, and according to the instrument played. Further, this investigation attempted to analyze the perceptions of students in relation to exposure to loud music and consequent health risks, as well as to characterize preventive behaviors. The results showed that music students are exposed to high sound levels in the course of their academic activity. This exposure is potentiated by practice outside the school and other external activities. Differences were found between music style, instruments, and classes. Tinnitus, hyperacusis, diplacusis, and sound distortion were reported by the students. However, students were not entirely aware of the health risks related to exposure to high sound pressure levels. These findings reflect the importance of starting intervention in relation to noise risk reduction at an early stage, when musicians are commencing their activity as students.