4 resultados para Sound Speed
em Instituto Politécnico do Porto, Portugal
Resumo:
Interactive products are appealing objects in a technology-driven society and the offer in the market is wide and varied. Most of the existing interactive products only provide either light or sound experiences. Therefore, the goal of this project was to develop a product aimed for children combining both features. This project was developed by a team of four thirdyear students with different engineering backgrounds and nationalities during the European Project Semester at ISEP (EPS@ISEP) in 2012. This paper presents the process that led to the development of an interactive sound table that combines nine identical interaction blocks, a control block and a sound block. Each interaction block works independently and is composed of four light emitting diodes (LED) and one infrared (IR) sensor. The control is performed by an Arduino microcontroller and the sound block includes a music shield and a pair of loud speakers. A number of tests were carried out to assess whether the controller, IR sensors, LED, music shield and speakers work together properly and if the ensemble was a viable interactive light and sound device for children.
Resumo:
Si3N4 tools were coated with a thin diamond film using a Hot-Filament Chemical Vapour Deposition (HFCVD) reactor, in order to machining a grey cast iron. Wear behaviour of these tools in high speed machining was the main subject of this work. Turning tests were performed with a combination of cutting speeds of 500, 700 and 900 m min−1, and feed rates of 0.1, 0.25 and 0.4 mm rot−1, remaining constant the depth of cut of 1 mm. In order to evaluate the tool behaviour during the turning tests, cutting forces were analyzed being verified a significant increase with feed rate. Diamond film removal occurred for the most severe set of cutting parameters. It was also observed the adhesion of iron and manganese from the workpiece to the tool. Tests were performed on a CNC lathe provided with a 3-axis dynamometer. Results were collected and registered by homemade software. Tool wear analysis was achieved by a Scanning Electron Microscope (SEM) provided with an X-ray Energy Dispersive Spectroscopy (EDS) system. Surface analysis was performed by a profilometer.
Resumo:
Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.
Resumo:
It is well recognized that professional musicians are at risk of hearing damage due to the exposure to high sound pressure levels during music playing. However, it is important to recognize that the musicians’ exposure may start early in the course of their training as students in the classroom and at home. Studies regarding sound exposure of music students and their hearing disorders are scarce and do not take into account important influencing variables. Therefore, this study aimed to describe sound level exposures of music students at different music styles, classes, and according to the instrument played. Further, this investigation attempted to analyze the perceptions of students in relation to exposure to loud music and consequent health risks, as well as to characterize preventive behaviors. The results showed that music students are exposed to high sound levels in the course of their academic activity. This exposure is potentiated by practice outside the school and other external activities. Differences were found between music style, instruments, and classes. Tinnitus, hyperacusis, diplacusis, and sound distortion were reported by the students. However, students were not entirely aware of the health risks related to exposure to high sound pressure levels. These findings reflect the importance of starting intervention in relation to noise risk reduction at an early stage, when musicians are commencing their activity as students.