36 resultados para Soils - Sampling
em Instituto Politécnico do Porto, Portugal
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
Among the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions in order to reduce the availability of fuel mass. However, the impact of these activities on soil physical and chemical properties varies according to the type of both soil and vegetation and is not fully understood. Therefore, soil monitoring campaigns are often used to measure these impacts. In this paper we have successfully used three statistical data treatments - the Kolmogorov-Smirnov test followed by the ANOVA and the Kruskall-Wallis tests – to investigate the variability among the soil pH, soil moisture, soil organic matter and soil iron variables for different monitoring times and sampling procedures.
Resumo:
The prescribed fire is a technique that is often used, it has several advantages. Pedological and hydropedological techniques were tested to assess the prescribed fire changes may cause in soils. This work was performed in Tresminas area (Vila Pouca de Aguiar, Northern Portugal), during February and March 2011. In the present study we applied several techniques. For the field sampling was followed the ISO 10381-1[1], ISO 10381-2[2], and FAO rules [3], as well as were used a grid with 17 points for measuring the soil parameters. During the fire, we have tried to check, with the assistance of the Portuguese Forestry Authority, some important parameters such as, the propagation speed, the size of the flame front and the intensity of energy emitted per unit area. Before the fire, was collected carefully soil disturbed and undisturbed samples for laboratory analysis, and measured soil water content; we also have placed four sets of thermocouples for measuring soil temperature. After the fire, were collected the thermocouples and new soil samples; the water content were measured in the soil and collected ashes. In the laboratory, after preparing and sieving the samples, were determined the soil particle size. The soil pH and electrical conductivity in water was also determined. The total carbon (TC) and inorganic carbon (IC)[4] was measured by a Shimadzu TOC-Vcsn. The water content in soil has not varied significantly before and after the fire, as well as soil pH and soil electrical conductivity. The TC and IC did not change, which was expected, since the fire not overcome the 200° C. Through the various parameters, we determined that the prescribed fire didn’t affect the soil. The low temperature of the fire and its rapid implementation that lead to the possible adverse effects caused by the wild fire didn’t occurred.
Resumo:
This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%.
Resumo:
Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4) concentrations of EB above 438 mg kgsoil −1 showed to be inhibitory for microbial activity.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Ibuprofen is one of the most used active pharmaceutical ingredients worldwide. A new method for the analysis of ibuprofen and its metabolites, hydroxyibuprofen and carboxyibuprofen, in soils is presented. The extraction of these compounds from the soil matrices was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The method involves a single extraction of the investigated compounds with purified water (acidified at pH 2.5 with hydrochloric acid), and a slow and continuous addition of the QuEChERS content, followed by the addition of acidified acetonitrile (1% acetic acid), prior to the determination by liquid chromatography coupled with fluorescence detection (LC–FLD). Validation studies were carried out using soil samples with a range of organic carbon contents. Recoveries of the fortified samples ranged from 79.5% to 101%. Relative standard deviations for all matrix–compound combinations did not exceed 3%. The method quantification limits were ≤22.4 μg kg−1 in all cases. The developed method was applied to the analysis of sixteen real samples.
Resumo:
A multiresidue approach using microwave-assisted extraction and liquid chromatography with photodiode array detection was investigated for the determination of butylate, carbaryl, carbofuran, chlorpropham, ethiofencarb, linuron,metobromuron, and monolinuron in soils. The critical parameters of the developed methodology were studied. Method validation was performed by analyzing freshly and aged spiked soil samples. The recoveries and relative standard deviations reached using the optimized conditions were between 77.0 ± 0.46% and 120 ± 2.9% except for ethiofencarb (46.4 ± 4.4% to 105 ± 1.6%) and butylate (22.1 ± 7.6% to 49.2 ± 11%). Soil samples from five locations of Portugal were analysed.
Resumo:
Airflow rate is one of the most important parameters for the soil vapor extraction of contaminated sites, due to its direct influence on the mass transfer occurring during the remediation process. This work reports the study of airflow rate influence on soil vapor extractions, performed in sandy soils contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene. The objectives were: (i) to analyze the influence of airflow rate on the process; (ii) to develop a methodology to predict the remediation time and the remediation efficiency; and (iii) to select the most efficient airflow rate. For dry sandy soils with negligible contents of clay and natural organic matter, containing the contaminants previously cited, it was concluded that: (i) if equilibrium between the pollutants and the different phases present in the soil matrix was reached and if slow diffusion effects did not occur, higher airflow rates exhibited the fastest remediations, (ii) it was possible to predict the remediation time and the efficiency of remediation with errors below 14%; and (iii) the most efficient remediation were reached with airflow rates below 1.2 cm3 s 1 standard temperature and pressure conditions.
Resumo:
A methodology for the determination of the pesticide chlorfenvinphos by microwave-assisted solvent extraction and square-wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane-acetone (1:1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of -0.60 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0 x 10-8 mol l-1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g-1 level. The average recoveries and standard deviations for the global procedure reached byMASE-square-wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.
Resumo:
An extraction-adsorptive stripping voltammetric procedure for the determination of the pesticide dialifos in soil samples using microwave-assisted solvent extraction and a mercury film ultramicroelectrode was developed. The method is based on the use of hexane-acetone solvent (1:1, v/v) and on controlled adsorptive accumulation of the insecticide at the potential of -0.10V (versus Ag/AgCl) in the presence of Britton-Robinson buffer (pH 2.0). Soil sample extracts were analyzed directly after drying and redissolution with the supporting electrolyte, but without other pretreatment. The limit of detection obtained for a 10sec collection time was 2.0x10-8 mol L-1. Recovery experiments for the global procedure, at the 0.100µgg-1 level, gave satisfactory average and standard deviation results for the two different soils tested.
Resumo:
A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.
Resumo:
An extraction-anodic adsorptive stripping voltammetric procedure using microwave-assisted solvent extraction and a gold ultramicroelectrode was developed for determining the pesticide ametryn in soil samples. The method is based on the use of acetonitrile as extraction solvent and on controlled adsorptive accumulation of the herbicide at the potential of 0.50 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 3.3). Soil sample extracts were analysed directly after drying and redissolution with the supporting electrolyte but without other pre-treatment. The limit of detection obtained for a 10 s collection time was 0.021 µg g-1. Recovery experiments for the global procedure, at the 0.500 µg g-1 level, gave satisfactory mean and standard deviation results which were comparable to those obtained by HPLC with UV detection.
Resumo:
Abstract This work reports the analysis of the efficiency and time of soil remediation using vapour extraction as well as provides comparison of results using both, prepared and real soils. The main objectives were: (i) to analyse the efficiency and time of remediation according to the water and natural organic matter content of the soil; and (ii) to assess if a previous study, performed using prepared soils, could help to preview the process viability in real conditions. For sandy soils with negligible clay content, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) the increase of soil water content and mainly of natural organic matter content influenced negatively the remediation process, making it less efficient, more time consuming, and consequently more expensive; and (ii) a previous study using prepared soils of similar characteristics has proven helpful for previewing the process viability in real conditions.
Resumo:
A procedure for the determination of seven indicator PCBs in soils and sediments using microwave-assisted extraction (MAE) and headspace solid-phase microextraction (HS-SPME) prior to GC-MS/MS is described. Optimization of the HS-SPME was carried out for the most important parameters such as extraction time, sample volume and temperature. The adopted methodology has reduced consumption of organic solvents and analysis runtime. Under the optimized conditions, the method detection limit ranged from 0.6 to 1 ng/g when 5 g of sample was extracted, the precision on real samples ranged from 4 to 21% and the recovery from 69 to 104%. The proposed method, which included the analysis of a certified reference material in its validation procedure, can be extended to several other PCBs and used in the monitoring of soil or sediments for the presence of PCBs.