36 resultados para Soil handling
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%.
Resumo:
Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4) concentrations of EB above 438 mg kgsoil −1 showed to be inhibitory for microbial activity.
Resumo:
Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.
Resumo:
Actualmente, os smartphones e outros dispositivos móveis têm vindo a ser dotados com cada vez maior poder computacional, sendo capazes de executar um vasto conjunto de aplicações desde simples programas de para tirar notas até sofisticados programas de navegação. Porém, mesmo com a evolução do seu hardware, os actuais dispositivos móveis ainda não possuem as mesmas capacidades que os computadores de mesa ou portáteis. Uma possível solução para este problema é distribuir a aplicação, executando partes dela no dispositivo local e o resto em outros dispositivos ligados à rede. Adicionalmente, alguns tipos de aplicações como aplicações multimédia, jogos electrónicos ou aplicações de ambiente imersivos possuem requisitos em termos de Qualidade de Serviço, particularmente de tempo real. Ao longo desta tese é proposto um sistema de execução de código remota para sistemas distribuídos com restrições de tempo-real. A arquitectura proposta adapta-se a sistemas que necessitem de executar periodicamente e em paralelo mesmo conjunto de funções com garantias de tempo real, mesmo desconhecendo os tempos de execução das referidas funções. A plataforma proposta foi desenvolvida para sistemas móveis capazes de executar o Sistema Operativo Android.
Resumo:
Airflow rate is one of the most important parameters for the soil vapor extraction of contaminated sites, due to its direct influence on the mass transfer occurring during the remediation process. This work reports the study of airflow rate influence on soil vapor extractions, performed in sandy soils contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene. The objectives were: (i) to analyze the influence of airflow rate on the process; (ii) to develop a methodology to predict the remediation time and the remediation efficiency; and (iii) to select the most efficient airflow rate. For dry sandy soils with negligible contents of clay and natural organic matter, containing the contaminants previously cited, it was concluded that: (i) if equilibrium between the pollutants and the different phases present in the soil matrix was reached and if slow diffusion effects did not occur, higher airflow rates exhibited the fastest remediations, (ii) it was possible to predict the remediation time and the efficiency of remediation with errors below 14%; and (iii) the most efficient remediation were reached with airflow rates below 1.2 cm3 s 1 standard temperature and pressure conditions.
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
Microwave-assisted solvent extraction was combined with anodic adsorptive stripping voltammetry at a gold microelectrode to extract and quantify the herbicide atrazine in spiked soil samples. A systematic study of the experimental parameters affecting the stripping response was carried out by square-wave voltammetry. The voltammetric procedure is based on controlled adsorptive accumulation of atrazine at the potential of 0.35V (versus Ag/AgCl) in the presence of Britton–Robinson buffer pH (2.0). The limit of detection obtained for a 30 sec collection time was 4.3x10-7 mol L-1. Recovery experiments, at the 1µgg-1 level of spiking, gave good results for the global procedure, and the values found were comparable to those obtained by HPLC.
Resumo:
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii1) remediation time; (ii2) remediation efficiency; and (ii3) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii1) increased remediation time (1.8–4.9 h, respectively); (ii2) decreased remediation efficiency (99–97%, respectively); and (ii3) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.
Resumo:
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8–13 h) and decreased the remediation efficiency (RE) (99–90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8–4.9 h) and decreased the RE (99–97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.
Resumo:
This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase.
Resumo:
Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
There is an increasing demand for highly dynamic realtime systems where several independently developed applications with different timing requirements can coexist. This paper proposes a protocol to integrate shared resources and precedence constraints among tasks in such systems assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among needed tasks, minimising the cost of blocking.
Resumo:
Due to the growing complexity and adaptability requirements of real-time embedded systems, which often exhibit unrestricted inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand. This paper proposes an iterative refinement approach for a service’s QoS configuration taking into account services’ inter-dependencies and quality constraints, and trading off the achieved solution’s quality for the cost of computation. Extensive simulations demonstrate that the proposed anytime algorithm is able to quickly find a good initial solution and effectively optimises the rate at which the quality of the current solution improves as the algorithm is given more time to run. The added benefits of the proposed approach clearly surpass its reducedoverhead.
Resumo:
One of the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions as it reduce the fuel mass availability. The impact of these management activities on soil physical and chemical properties varies according to the type of both soil and vegetation. Decisions in forest management plans are often based on the results obtained from soil-monitoring campaigns. Those campaigns are often man-labor intensive and expensive. In this paper we have successfully used the multivariate statistical technique Robust Principal Analysis Compounds (ROBPCA) to investigate on the sampling procedure effectiveness for two different methodologies, in order to reflect on the possibility of simplifying and reduce the sampling collection process and its auxiliary laboratory analysis work towards a cost-effective and competent forest soil characterization.