42 resultados para Simulation with multiple Consumers Profiles
em Instituto Politécnico do Porto, Portugal
Resumo:
A presente dissertação insere-se no âmbito da unidade curricular “ Dissertação” do 2º ano do mestrado em Engenharia Eletrotécnica – Sistemas Elétricos de Energia. Com o aumento crescente do número de consumidores de energia, é cada vez mais imperioso a adoção de medidas de racionalização e gestão dos consumos da energia elétrica. Existem diferentes tipos de dificuldades no planeamento e implementação de novas centrais produtoras de energia renovável, pelo que também por este motivo é cada vez mais importante adoção de medidas de gestão de consumos, quer ao nível dos clientes alimentados em média tensão como de baixa tensão. Desta forma será mais acessível a criação de padrões de eficiência energética elevados em toda a rede de distribuição de energia elétrica. Também a economia é afetada por uma fraca gestão dos consumos por parte dos clientes. Elevados desperdícios energéticos levam a que mais energia tenha que ser produzida, energia essa que contribui ainda mais para a elevada taxa de dependência energética em Portugal, e para o degradar da economia nacional. Coloca-se assim a necessidade de implementar planos e métodos que promovam a eficiência energética e a gestão racional de consumos de energia elétrica. Apresenta-se nesta dissertação várias propostas, algumas na forma de projetos já em execução, que visam sensibilizar o consumidor para a importância da utilização eficiente de energia e, ao mesmo tempo, disponibilizam as ferramentas tecnológicas adequadas para auxiliar a implementação dos métodos propostos. Embora os planos apresentados, sobejamente conhecidos, tenham imensa importância, a implementação nos vários consumidores de sistemas capazes de efetivamente reduzir consumos tem um papel fundamental. Equipamentos de gestão de consumos, que são apresentados nesta dissertação, permitem ao consumidor aceder diretamente ao seu consumo. Podem aceder não apenas ao consumo global da instalação mas também ao consumo específico por equipamento, permitindo perceber onde se verifica a situação mais desfavorável. Funcionalidades de programação de perfis tipo, com limitações de potência em vários períodos horários, bem como possibilidades de controlo remoto com recurso a aplicações para Smartphones permitem a redução de consumos ao nível da rede de distribuição e, desta forma, contribuir para a redução dos desperdícios e da dependência energética em Portugal. No âmbito do trabalho de dissertação é desenvolvida uma metodologia de comercialização de potência, que é apresentada nesta tese. Esta metodologia propõem que o consumidor, em função dos seus consumos, pague apenas a quantidade de potência que efetivamente necessita num certo período de tempo. Assim, o consumidor deixa de pagar uma tarifa mensal fixa associada á sua potência contratada, e passará a pagar um valor correspondente apenas à potência que efetivamente solicitou em todas as horas durante o mês. Nesta metodologia que é apresentada, o consumidor poderá também fazer uma análise do seu diagrama de cargas e simular uma alteração da sua tarifa, tarifa esta que varia entre tarifa simples, bi-horária semanal, bi-horária diária, tri-horária semanal ou tri-horária diária, de forma a perceber em qual destas pagará um menor valor pela mesma energia. De forma a que o consumidor possa perceber se haverá vantagem de uma alteração para uma potência contratada flexível, ou para uma outra tarifa associada á energia, tem ao seu dispor uma ferramenta, que em função dos seus consumos, permite retirar conclusões sobre o preço final a pagar na fatura, após cada tipo de alteração. Esta ferramenta foi validada com recurso a várias simulações, para diferentes perfis de consumidores. Desta forma, o utilizador fica a perceber que realmente pode poupar com uma potência contratada flexível, ao mesmo tempo que pode identificar-se com um perfil de simulação e, mais facilmente, perceber para que alteração tarifária pode usufruir de uma maior poupança.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
The increasing importance of the integration of distributed generation and demand response in the power systems operation and planning, namely at lower voltage levels of distribution networks and in the competitive environment of electricity markets, leads us to the concept of smart grids. In both traditional and smart grid operation, non-technical losses are a great economic concern, which can be addressed. In this context, the ELECON project addresses the use of demand response contributions to the identification of non-technical losses. The present paper proposes a methodology to be used by Virtual Power Players (VPPs), which are entities able to aggregate distributed small-size resources, aiming to define the best electricity tariffs for several, clusters of consumers. A case study based on real consumption data demonstrates the application of the proposed methodology.
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.
Resumo:
Demo presented in 12th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2015). 8 to 12, Jun, 2015. La Roche-en-Ardenne, Belgium. Extended abstract.
Resumo:
With the implementation of the Bologna Process several challenges have been posed to higher education institution, particularly in Portugal. One of the main implications is related to the change of the paradigm of a teacher centered education, to a paradigm that is student centered. This change implies the change of the way to assess courses in higher education institutions. Continuous and formative assessments emerged as the focus, catalyzed by electronic assessment, or e-assessment. This paper presents a case of the implementation of an e-assessment strategy, implemented in order to allow continuous, formative assessment in numerous mathematics classes using multiple-choice questions tests implement in Moodle open-source learning management system. The implementation can be considered a success.
Resumo:
With the implementation of the Bologna Process several challenges have been posed to higher education institution, particularly in Portugal. One of the main implications is related to the change of the paradigm of a teacher centered education, to a paradigm that is student centered. This change implies the change of the way to assess courses in higher education institutions. Continuous and formative assessments emerged as the focus, catalyzed by electronic assessment, or e-assessment. This paper presents a case of the implementation of an e-assessment strategy, implemented in order to allow continuous, formative assessment in numerous mathematics classes using multiple-choice questions tests implement in Moodle open-source learning management system. The implementation can be considered a success.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
Most current-generation Wireless Sensor Network (WSN) nodes are equipped with multiple sensors of various types, and therefore support for multi-tasking and multiple concurrent applications is becoming increasingly common. This trend has been fostering the design of WSNs allowing several concurrent users to deploy applications with dissimilar requirements. In this paper, we extend the advantages of a holistic programming scheme by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and eliminate redundancies across applications. To achieve this useful high-level optimization, we model each user application as a linear sequence of executable instructions. We show how well-known string-matching algorithms such as the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to produce an optimal merged monolithic sequence of the deployed applications that takes into account embedded scheduling information. We show that our approach can help in achieving about 60% average energy savings in processor usage compared to the normal execution of concurrent applications.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.