6 resultados para Signal transforms
em Instituto Politécnico do Porto, Portugal
Resumo:
An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos.
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
A constante evolução da tecnologia permitiu ao ser humano a utilização de dispositivos electrónicos nas suas rotinas diárias. Estas podem ser afetadas quando os utilizadores sofrem de deficiências ou doenças que afetam as suas capacidades motoras. Com o intuito de minimizar este obstáculo surgiram as Interfaces Homem-Computador (HCI). É neste panorama que os sistemas HCI baseados em Eletroculografia (EOG) assumem um papel preponderante na melhoria da qualidade de vida destes indivíduos. A Eletroculografia é o resultado da aquisição do movimento ocular, que pode ser adquirido através de diversos métodos. Os métodos mais convencionais utilizam elétrodos de superfície para aquisição dos sinais elétricos, ou então, utilizam sistemas de gravação de vídeo, que gravam o movimento ocular. O objetivo desta tese é desenvolver um sistema HCI baseado em Eletroculografia, que adquire o sinal elétrico do movimento ocular através de elétrodos de superfície. Para tal desenvolveu-se um circuito eletrónico para a aquisição do sinal de EOG, bem como um algoritmo em Python para análise do mesmo. O circuito foi desenvolvido recorrendo a seis módulos diferentes, cada um deles com uma função específica. Para cada módulo foi necessário desenhar e implementar placas de circuito impresso, que quando conectadas entre si permitem filtrar, amplificar e digitalizar os sinais elétricos, adquiridos através de elétrodos de superfície, originados pelo movimento ocular. O algoritmo criado em Python permite analisar os dados provenientes do circuito e converte-os para coordenadas. Através destas foi possível determinar o sentido e a amplitude do movimento ocular.
Resumo:
The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.