4 resultados para Shrimp ponds
em Instituto Politécnico do Porto, Portugal
Resumo:
Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.
Resumo:
Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, plants, microalgae, fungi, bacteria, viruses and cell lines. The aim of this study was to assess the toxic effects of aqueous, methanolic and hexane crude extracts of benthic and picoplanktonic cyanobacteria isolated from estuarine environments, towards the nauplii of the brine shrimp Artemia salina and embryos of the sea urchin Paracentrotus lividus. The A. salina lethality test was used as a frontline screen and then complemented by the more specific sea urchin embryo-larval assay. Eighteen cyanobacterial isolates, belonging to the genera Cyanobium, Leptolyngbya, Microcoleus, Phormidium, Nodularia, Nostoc and Synechocystis, were tested. Aqueous extracts of cyanobacteria strains showed potent toxicity against A. salina, whereas in P. lividus, methanolic and aqueous extracts showed embryo toxicity, with clear effects on development during early stages. The results suggest that the brackishwater cyanobacteria are producers of bioactive compounds with toxicological effects that may interfere with the dynamics of invertebrate populations.
Resumo:
The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria.
Resumo:
Among the Cyanoprokaryota, the genera Synechocystis and Synechococcus have rarely been studied with respect to potential toxicity. This is particularly true with marine environments where studies about the toxicity of cyanobacteria are restricted to filamentous forms at the warmer temperate and tropical regions and also to filamentous forms at cold seas such as the Baltic Sea. In this study, we describe the effects of cyanobacterial strains of the Synechocystis and Synechococcus genera isolated from the marine coast of Portugal, on marine invertebrates. Crude and partially purified extracts at a concentration of 100 mg/ml of freeze-dried material of the marine strains were tested for acute toxicity in nauplii of the brine shrimp Artemia salina, in the rotifer Brachionus plicatillis and in embryos of the sea urchin Paracentrotus lividus and the mussel Mytilus galloprovincialis. The cyanobacterial extracts, especially the crude extract, had an impact on A. salina nauplii. No significant toxic effects were registered against the rotifer. A negative impact of all strains was recorded on the embryonic development of the sea urchin, with toxic effects resulting in an inhibition of embryogenesis or development of smaller larvae. To the mussel embryos, the effects of cyanobacterial extracts resulted in a complete inhibition of embryogenesis. The results of all assays indicate that Synechocystis and Synechococcus marine strains contained toxic compounds to marine invertebrates.