2 resultados para Short take-off and landing aircraft.
em Instituto Politécnico do Porto, Portugal
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
This study identifies predictors and normative data for quality of life (QOL) in a sample of Portuguese adults from general population. A cross-sectional correlational study was undertaken with two hundred and fifty-five (N = 255) individuals from Portuguese general population (mean age 43 years, range 25–84 years; 148 females, 107 males). Participants completed the European Portuguese version of the World Health Organization Quality of Life short-form instrument and the European Portuguese version of the Center for Epidemiologic Studies Depression Scale. Demographic information was also collected. Portuguese adults reported their QOL as good. The physical, psychological and environmental domains predicted 44 % of the variance of QOL. The strongest predictor was the physical domain and the weakest was social relationships. Age, educational level, socioeconomic status and emotional status were significantly correlated with QOL and explained 25 % of the variance of QOL. The strongest predictor of QOL was emotional status followed by education and age. QOL was significantly different according to: marital status; living place (mainland or islands); type of cohabitants; occupation; health. The sample of adults from general Portuguese population reported high levels of QOL. The life domain that better explained QOL was the physical domain. Among other variables, emotional status best predicted QOL. Further variables influenced overall QOL. These findings inform our understanding on adults from Portuguese general population QOL and can be helpful for researchers and practitioners using this assessment tool to compare their results with normative data