16 resultados para Short circuit in stator
em Instituto Politécnico do Porto, Portugal
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
This paper reports investigation on the estimation of the short circuit impedance of power transformers, using fractional order calculus to analytically study the influence of the diffusion phenomena in the windings. The aim is to better characterize the medium frequency range behavior of leakage inductances of power transformer models, which include terms to represent the magnetic field diffusion process in the windings. Comparisons between calculated and measured values are shown and discussed.
Resumo:
In this report, we propose an AC response equivalent circuit model to describe the admittance measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic precursors. This circuit describes the contact resistances, the back contact, and the heterojunction with two trap levels. The study of the back contact resistance allowed the estimation of a back contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage, 360 mV; and short circuit current density, 6.8 mA/cm2.
Resumo:
In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis. The hole density, space charge region width and band gap energy were estimated from the external quantum efficiency measurements. A MoS2 layer that formed during the sulphurization process was also identified and analyzed in this work. The solar cells had the following structure: soda lime glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Al grid. The best solar cell showed an opencircuit voltage of 345 mV, a short-circuit current density of 4.42 mA/cm2, a fill factor of 44.29% and an efficiency of 0.68% under illumination in simulated standard test conditions: AM 1.5 and 100 mW/cm2.
Resumo:
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
Resumo:
Com o presente trabalho pretende-se avaliar a segurança de um elemento estrutural de um edifício antigo (tradicional) da baixa da Porto edificado nos finais do última quartel do século XVIII. Após uma pequena introdução onde será exposta a estrutura do trabalho, capítulo a capítulo, será feita uma explanação histórica sobre o meio urbano onde o edifício está construído, os métodos construtivos adotados desde 1755 até aos nossos dias, passando pelo historial do próprio edificado. Passar-se-á de seguida à análise do edifício, apresentando evidências do que eventualmente terá sido construído de base até aos dias de hoje. Será feita uma apresentação dos elementos construtivos que compõe actualmente o edificio, apresentando evidências do estado de cada um, ou seja, será feita um levantamento das patologias evidentes e visíveis a olho nu, recorrendo a métodos expeditos de análise. Também será feito um levantamento dimensional da volumetria , planimétria do edifício e da compartimentação, registando as dimensões dos elementos estruturais e arquitectónicos relevantes para a realização dos respectivos projectos. Posteriormente passar-se-á para uma exposição dos diversos tipos de ensaios, começando pela apresentação dos métodos disponíveis atualmente para a caracterização física e mecânica dos materiais, seguida da realização dos ensaios, recolha de dados no edificado e proposta de definição dos materiais. Após a recolha de todos estes elementos, estão reunidas as condições para se passar a uma análise estrutural, onde para estes objectivos, serão aplicados os mais avançados programas de cálculo estrutural existentes na actualidade, suportados em metodologias que analisam não só o elemento mas também a sua interação com os que lhe servem de fronteira acabando-se num todo que é o edifício. Pretende-se com este estudo estrutural avaliar a segurança de uma parte significativa e representativa do edifico baseado na regulamentação em vigor. A parte a analisar representa o pavimento aplicado na construção. Finalizar-se-á com a apresentação das conclusões, propondo eventuais ações futuras.
Resumo:
O presente trabalho tem como principal objectivo a avaliação do sujamento da superfície de transferência de calor do evaporador de uma bomba de calor, quando se utiliza o efluente da fábrica de pasta e papel da Portucel Soporcel em Cacia como fluido de aquecimento. Para a realização deste estudo montou-se uma instalação, composta por uma bomba de calor, um circuito de água de arrefecimento do condensador da bomba de calor e um circuito de água residual quente para o aquecimento do evaporador da bomba de calor. O ensaio decorreu durante um período de 84 dias, durante o qual foram registadas as temperaturas em vários pontos dos circuitos e os caudais de circulação. A evolução temporal da quantidade de calor transferida no evaporador, assim como, a comparação do coeficiente global de transferência de calor em condições ideias e experimentais, permitiu verificar que a razão U/U0 para o evaporador da bomba de calor não teve um comportamento decrescente ao longo do período de ensaio, permitindo concluir que, nas condições operatórias da experiência, não ocorreu sujamento na superfície do evaporador. No estudo de corrosão do cobre quando exposto à água residual em questão, obteve-se, para a velocidade de corrosão, o valor de 1,56 mg/(dm2 .dia), indicando assim que a corrosão do cobre naquele meio é praticamente inexistente.
Resumo:
Effective legislation and standards for the coordination procedures between consumers, producers and the system operator supports the advances in the technologies that lead to smart distribution systems. In short-term (ST) maintenance scheduling procedure, the energy producers in a distribution system access to the long-term (LT) outage plan that is released by the distribution system operator (DSO). The impact of this additional information on the decision-making procedure of producers in ST maintenance scheduling is studied in this paper. The final ST maintenance plan requires the approval of the DSO that has the responsibility to secure the network reliability and quality, and other players have to follow the finalized schedule. Maintenance scheduling in the producers’ layer and the coordination procedure between them and the DSO is modelled in this paper. The proposed method is applied to a 33-bus distribution system.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy technique group (n = 23); and 2 control groups, wait-and-see group (n = 25) and placebo group 21 (n = 22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as 22 pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, 23 immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4 × 5 mixed repeated- 24 measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. 25 Results: A group-by-time interaction was detected in all variables (P b .01), except contralateral rotation. The 26 immediate effect sizes of the contralateral flexion, ipsilateral rotation, and pressure pain threshold were large for 3 27 experimental groups. Nevertheless, after 24 hours and 1 week, only IC group maintained the effect size. 28 Conclusions: Manual techniques on upper trapezius with latent trigger point seemed to improve the cervical range of 29 motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. (J Manipulative Physiol 301 Ther 2013;xx:1-10)
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
Performance appraisal increasingly assumes a more important role in any organizational environment. In the trucking industry, drivers are the company's image and for this reason it is important to develop and increase their performance and commitment to the company's goals. This paper aims to create a performance appraisal model for trucking drivers, based on a multi-criteria decision aid methodology. The PROMETHEE and MMASSI methodologies were adapted using the criteria used for performance appraisal by the trucking company studied. The appraisal involved all the truck drivers, their supervisors and the company's Managing Director. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used. The results are to be used as a decision-making tool to allocate drivers to the domestic haul service.