2 resultados para Sewage -- Analysis
em Instituto Politécnico do Porto, Portugal
Resumo:
Different problems are daily discuss on environmental aspects such acid rain, eutrophication, global warming and an others problems. Rarely do we find some discussions about phosphorus problematic. Through the years the phosphorus as been a real problem and must be more discussed. On this thesis was done a global material flow analysis of phosphorus, based on data from the year 2004, the production of phosphate rock in that year was 18.9 million tones, almost this amount it was used as fertilizer on the soil and the plants only can uptake, on average, 20% of the input of fertilizer to grow up, the remainder is lost for the phosphorus soil. In the phosphorus soil there is equilibrium between the phosphorus available to uptake from the plants and the phosphorus associate with other compounds, this equilibrium depends of the kind of soil and is related with the soil pH. A reserve inventory was done and we have 15,000 million tones as reserve, the amount that is economical available. The reserve base is estimated in 47,000 million tones. The major reserves can be found in Morocco and Western Sahara, United Sates, China and South Africa. The reserve estimated in 2009 was 15,000 million tone of phosphate rock or 1,963 million tone of P. If every year the mined phosphate rock is around 22 Mt/yr (phosphorus production on 2008 USGS 2009), and each year the consumption of phosphorus increases because of the food demand, the reserves of phosphate rock will be finished in about 90 years, or maybe even less. About the value/impact assessment was done a qualitative analysis, if on the future we don’t have more phosphate rock to produce fertilizers, it is expected a drop on the crops yields, each depends of the kind of the soil and the impact on the humans feed and animal production will not be a relevant problem. We can recovery phosphorus from different waste streams such as ploughing crop residues back into the soil, Food processing plants and food retailers, Human and animal excreta, Meat and bone meal, Manure fibre, Sewage sludge and wastewater. Some of these examples are developed in the paper.
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.