3 resultados para Sensory organs
em Instituto Politécnico do Porto, Portugal
Resumo:
Thiodicarb, a carbamate pesticide widely used on crops, may pose several environmental and health concerns. This study aimed to explore its toxicological profile on male rats using hematological, biochemical, histopathological, and flow cytometry markers. Exposed animals were dosed daily at 10, 20, or 40 mg/kg/body weight (group A, B, and C, respectively) during 30 d. No significant changes were observed in hematological parameters among all groups. After 10 d, a decrease of total cholesterol levels was noted in rats exposed to 40 mg/kg. Aspartate aminotransferase (AST) activity increased (group A at 20 d; groups A and B at 30 d) and alkaline phosphatase (ALP) (group B at 30 d) activity significantly reduced. At 30 d a decrease of some of the other evaluated parameters was observed with total cholesterol and urea levels in group A as well as total protein and creatinine levels in groups A and B. Histological results demonstrated multi-organ dose-related damage in thiodicarb-exposed animals, evidenced as hemorrhagic and diffuse vacuolation in hepatic tissue; renal histology showed disorganized glomeruli and tubular cell degeneration; spleen was ruptured with white pulp and clusters of iron deposits within red pulp; significant cellular loss was noted at the cortex of thymus; and degenerative changes were observed within testis. The histopathologic alterations were most prominent in the high-dose group. Concerning flow cytometry studies, an increase of lymphocyte number, especially T lymphocytes, was seen in blood samples from animals exposed to the highest dose. Taken together, these results indicate marked systemic organ toxicity in rats after subacute exposure to thiodicarb.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.