4 resultados para Sensitive Development

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent forms of cancer in women. Despite all recent advances in early diagnosis and therapy, mortality data is not decreasing. This is an outcome of the inexistence of validated serum biomarkers allowing an early prognosis, out coming from the limited understanding of the natural history of the disease. In this context, miRNAs have been attracting a special interest throughout the scientific community as promising biomarkers in the early diagnosis of cancer. In breast cancer, several miRNAs and their levels of expression are significantly different between normal tissue and tissue with neoplasia, as well as between different molecular subtypes of breast cancer, also associated with prognosis. Thus, this these presents a meta-analysis that allows identifying a reliable miRNA biomarker for the early detection of breast cancer. In this, miRNA-155 was identified as the best one and an electrochemical biosensor was developed for its detection in serum samples. The biosensor was assembled by following three button-up stages: (1) the complementary miRNA sequence thiol terminated (anti-miRNA-155) was immobilized on a commercial gold screen-printed electrode (Au-SPE), followed by (2) blocking non-specific binding with mercaptosuccinic acid and by (3) miRNA hybridization. The biosensor was able to detect miRNA concentrations lying in the 10-18 mol/L (aM) range, displaying a linear response from 10 aM to 1nM. The device showed a limit of detection of 5.7 aM in human serum samples and good selectivity against other biomolecules in serum, such as cancer antigen CA-15.3 and bovine serum albumin (BSA). Overall, this simple and sensitive strategy is a promising approach for the quantitative and/or simultaneous analysis of multiple miRNA in physiological fluids, aiming at further biomedical research devoted to biomarker monitoring and point-of-care diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. For this reason, several attempts have been made in order to develop methods that accurately quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be very accurate, showing very good sensibility and specificity. However, accurate quantification of this molecule, which is present at very low concentrations both at physiological and pathological states, is always a complex task and a target of intense research. Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification method for use in medical laboratories as an additional tool for diagnosis and/or treatment monitoring of a wide range of pathologies. We also aimed to evaluate the performance of the HPLC-based method developed here in a wide range of biological matrices. Material and methods: All experiments were performed on a Hitachi LaChrom Elite® HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 RP-18 (5μm) column. The method was further validated according to ICH guidelines. The biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions. Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). Additionally, the developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356 nm. Conclusion: The method described in this study, which was successfully developed and validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis in a wide range of biological matrices.