59 resultados para Selection tool
em Instituto Politécnico do Porto, Portugal
Resumo:
Atualmente, as estratégias que as empresas optam por seguir para a maximização de recursos materiais e humanos, podem representar a diferença entre o sucesso e o fracasso. A seleção de fornecedores é um fator bastante crítico para o desempenho da empresa compradora, sendo por vezes necessária a resolução de problemas que apresentam um elevado grau de complexidade. A escolha dos métodos a ser utilizados e a eleição dos critérios mais relevantes foi feito com base no estudo de diversos autores e nas repostas obtidas a um inquérito online difundido por uma amostra de empresas portuguesas, criado especificamente para compreender quais os fatores que mais peso tinham nas decisões de escolha de parceiros. Além disso, os resultados adquiridos desta forma foram utilizados para conceder mais precisão às ponderações efetuadas na ferramenta de seleção, na escolha dos melhores fornecedores introduzidos pelos utilizadores da mesma. Muitos estudos literários propõem o uso de métodos para simplificar a tarefa de seleção de fornecedores. Esta dissertação aplica o estudo realizado nos métodos de seleção, nomeadamente o Simple Multi-Attribute Rating Technique (SMART) e Analytic Hierarchy Process (AHP), necessários para o desenvolvimento de uma ferramenta de software online que permitia, a qualquer empresa nacional, obter uma classificação para os seus fornecedores perante um conjunto de critérios e subcritérios.
Resumo:
The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.
Resumo:
The purpose of this paper is to analyse if Multiple-Choice Tests may be considered an interesting alternative for assessing knowledge, particularly in the Mathematics area, as opposed to the traditional methods, such as open questions exams. In this sense we illustrate some opinions of the researchers in this area. Often the perception of the people about the construction of this kind of exams is that they are easy to create. But it is not true! Construct well written tests it’s a hard work and needs writing ability from the teachers. Our proposal is analyse the construction difficulties of multiple - choice tests as well some advantages and limitations of this type of tests. We also show the frequent critics and worries, since the beginning of this objective format usage. Finally in this context some examples of Multiple-Choice Items in the Mathematics area are given, and we illustrate as how we can take advantage and improve this kind of tests.
Resumo:
The design and development of simulation models and tools for Demand Response (DR) programs are becoming more and more important for adequately taking the maximum advantages of DR programs use. Moreover, a more active consumers’ participation in DR programs can help improving the system reliability and decrease or defer the required investments. DemSi, a DR simulator, designed and implemented by the authors of this paper, allows studying DR actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. DemSi considers the players involved in DR actions, and the results can be analyzed from each specific player point of view.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
This paper presents a simulator for electric vehicles in the context of smart grids and distribution networks. It aims to support network operator´s planning and operations but can be used by other entities for related studies. The paper describes the parameters supported by the current version of the Electric Vehicle Scenario Simulator (EVeSSi) tool and its current algorithm. EVeSSi enables the definition of electric vehicles scenarios on distribution networks using a built-in movement engine. The scenarios created with EVeSSi can be used by external tools (e.g., power flow) for specific analysis, for instance grid impacts. Two scenarios are briefly presented for illustration of the simulator capabilities.
Resumo:
In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
This paper proposes a swarm intelligence long-term hedging tool to support electricity producers in competitive electricity markets. This tool investigates the long-term hedging opportunities available to electric power producers through the use of contracts with physical (spot and forward) and financial (options) settlement. To find the optimal portfolio the producer risk preference is stated by a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance estimation and the expected return are based on a forecasted scenario interval determined by a long-term price range forecast model, developed by the authors, whose explanation is outside the scope of this paper. The proposed tool makes use of Particle Swarm Optimization (PSO) and its performance has been evaluated by comparing it with a Genetic Algorithm (GA) based approach. To validate the risk management tool a case study, using real price historical data for mainland Spanish market, is presented to demonstrate the effectiveness of the proposed methodology.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
This paper introduces the PCMAT platform project and, in particular, one of its components, the PCMAT Metadata Authoring Tool. This is an educational web application that allows the project metadata creators to write the metadata associated to each learning object without any concern for the metadata schema semantics. Furthermore it permits the project managers to add or delete elements to the schema, without having to rewrite or compile any code.
Resumo:
This paper presents the SmartClean tool. The purpose of this tool is to detect and correct the data quality problems (DQPs). Compared with existing tools, SmartClean has the following main advantage: the user does not need to specify the execution sequence of the data cleaning operations. For that, an execution sequence was developed. The problems are manipulated (i.e., detected and corrected) following that sequence. The sequence also supports the incremental execution of the operations. In this paper, the underlying architecture of the tool is presented and its components are described in detail. The tool's validity and, consequently, of the architecture is demonstrated through the presentation of a case study. Although SmartClean has cleaning capabilities in all other levels, in this paper are only described those related with the attribute value level.
Resumo:
Today, business group decision making is an extremely important activity. A considerable number of applications and research have been made in the past years in order to increase the effectiveness of decision making process. In order to support the idea generation process, IGTAI (Idea Generation Tool for Ambient Intelligence) prototype was created. IGTAI is a Group Decision Support System designed to support any kind of meetings namely distributed, asynchronous or face to face. It aims at helping geographically distributed (or not) people and organizations in the idea generation task, by making use of pervasive hardware in a meeting room, expanding the meeting beyond the room walls by allowing a ubiquitous access through different kinds of equipment. This paper focus on the research made to build IGTAI prototype, its architecture and its main functionalities, namely the support given in the different phases of the idea generation meeting.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia