69 resultados para Scheduler simulator

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response can play a very relevant role in future power systems in which distributed generation can help to assure service continuity in some fault situations. This paper deals with the demand response concept and discusses its use in the context of competitive electricity markets and intensive use of distributed generation. The paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes using a realistic network simulation based on PSCAD. Demand response opportunities are used in an optimized way considering flexible contracts between consumers and suppliers. A case study evidences the advantages of using flexible contracts and optimizing the available generation when there is a lack of supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its deadline. Over the years we are witnessing an ever increasing demand for functionality enhancements in the embedded real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic embedded real- time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide variety of simulations. The source code of the SPARTS is available for download at [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A área da simulação computacional teve um rápido crescimento desde o seu apareciment, sendo actualmente uma das ciências de gestão e de investigação operacional mais utilizadas. O seu princípio baseia-se na replicação da operação de processos ou sistemas ao longo de períodos de tempo, tornando-se assim uma metodologia indispensável para a resolução de variados problemas do mundo real, independentemente da sua complexidade. Das inúmeras áreas de aplicação, nos mais diversos campos, a que mais se destaca é a utilização em sistemas de produção, onde o leque de aplicações disponível é muito vasto. A sua aplicação tem vindo a ser utilizada para solucionar problemas em sistemas de produção, uma vez que permite às empresas ajustar e planear de uma maneira rápida, eficaz e ponderada as suas operações e os seus sistemas, permitindo assim uma rápida adaptação das mesmas às constantes mudanças das necessidades da economia global. As aplicações e packages de simulação têm seguindo as tendências tecnológicas pelo que é notório o recurso a tecnologias orientadas a objectos para o desenvolvimento das mesmas. Este estudo baseou-se, numa primeira fase, na recolha de informação de suporte aos conceitos de modelação e simulação, bem como a respectiva aplicação a sistemas de produção em tempo real. Posteriormente centralizou-se no desenvolvimento de um protótipo de uma aplicação de simulação de ambientes de fabrico em tempo real. O desenvolvimento desta ferramenta teve em vista eventuais fins pedagógicos e uma utilização a nível académico, sendo esta capaz de simular um modelo de um sistema de produção, estando também dotada de animação. Sem deixar de parte a possibilidade de integração de outros módulos ou, até mesmo, em outras plataformas, houve ainda a preocupação acrescida de que a sua implementação recorresse a metodologias de desenvolvimento orientadas a objectos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a Multi-Agent Market simulator designed for developing new agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. This tool studies negotiations based on different market mechanisms and, time and behavior dependent strategies. The results of the negotiations between agents are analyzed by data mining algorithms in order to extract rules that give agents feedback to improve their strategies. The system also includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agent reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All over the world Distributed Generation is seen as a valuable help to get cleaner and more efficient electricity. Under this context distributed generators, owned by different decentralized players can provide a significant amount of the electricity generation. To get negotiation power and advantages of scale economy, these players can be aggregated giving place to a new concept: the Virtual Power Producer. Virtual Power Producers are multi-technology and multi-site heterogeneous entities. Virtual Power Producers should adopt organization and management methodologies so that they can make Distributed Generation a really profitable activity, able to participate in the market. In this paper we address the integration of Virtual Power Producers into an electricity market simulator –MASCEM – as a coalition of distributed producers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.