22 resultados para SENSITIVE K CHANNEL
em Instituto Politécnico do Porto, Portugal
Resumo:
Reliability of communications is key to expand application domains for sensor networks. SinceWireless Sensor Networks (WSN) operate in the license-free Industrial Scientific and Medical (ISM) bands and hence share the spectrum with other wireless technologies, addressing interference is an important challenge. In order to minimize its effect, nodes can dynamically adapt radio resources provided information about current spectrum usage is available. We present a new channel quality metric, based on availability of the channel over time, which meaningfully quantifies spectrum usage. We discuss the optimum scanning time for capturing the channel condition while maintaining energy-efficiency. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our metric has strong correlation with the Packet Reception Rate (PRR). This suggests that quantifying interference in the channel can help in adapting resources for better reliability. We present a discussion of the usage of our metric for various resource allocation and adaptation strategies.
Resumo:
Mestrado em Engenharia Electrotcnica e de Computadores
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5400 U mL1. The lowest detection limit was found to be 0.5 U mL1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Flavoured versus natural waters: macromineral (Ca, Mg, K, Na) and micromineral (Fe, Cu, Zn) contents
Resumo:
Macro (Ca, Mg, K, Na) and micromineral (Fe, Zn, Cu) composition of 39 waters was analysed. Determinations were made by atomic flame spectrophotometry for macrominerals and electrothermic atomisation in graphite furnace for microminerals. Mineral contents of still or sparkling natural waters (without flavours) changed from brand to brand. MannWhitney test was used to search for significant differences between flavoured and natural waters. For that, the concentration of each mineral was compared to the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. The statistical study demonstrated that flavoured waters generally have increased contents of K, Na, Fe and Cu. The added preservatives also led to significant differences in the mineral composition. Acidifying agents and fruit juice can also be correlated to the increase of Mg, K, Na, Fe and Cu. Sweeteners do not provide any significant difference in Ca, Mg, Fe and Zn contents.
Resumo:
Copper zinc tin sulfide (CZTS) is a promising Earthabundant thin-film solar cell material; it has an appropriate band gap of ~1.45 eV and a high absorption coefficient. The most efficient CZTS cells tend to be slightly Zn-rich and Cu-poor. However, growing Zn-rich CZTS films can sometimes result in phase decomposition of CZTS into ZnS and Cu2SnS3, which is generally deleterious to solar cell performance. Cubic ZnS is difficult to detect by XRD, due to a similar diffraction pattern. We hypothesize that synchrotron-based extended X-ray absorption fine structure (EXAFS), which is sensitive to local chemical environment, may be able to determine the quantity of ZnS phase in CZTS films by detecting differences in the second-nearest neighbor shell of the Zn atoms. Films of varying stoichiometries, from Zn-rich to Cu-rich (Zn-poor) were examined using the EXAFS technique. Differences in the spectra as a function of Cu/Zn ratio are detected. Linear combination analysis suggests increasing ZnS signal as the CZTS films become more Zn-rich. We demonstrate that the sensitive technique of EXAFS could be used to quantify the amount of ZnS present and provide a guide to crystal growth of highly phase pure films.
Resumo:
Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a collision-free medium access control (MAC) protocol which implements static-priority scheduling and present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel.
Resumo:
We consider reliable communications in Body Area Networks (BAN), where a set of nodes placed on human body are connected using wireless links. In order to keep the Specific Absorption Rate (SAR) as low as possible for health safety reasons, these networks operate in low transmit power regime, which however, is known to be error prone. It has been observed that the fluctuations of the Received Signal Strength (RSS) at the nodes of a BAN on a moving person show certain regularities and that the magnitude of these fluctuations are significant (5 - 20 dB). In this paper, we present BANMAC, a MAC protocol that monitors and predicts the channel fluctuations and schedules transmissions opportunistically when the RSS is likely to be higher. The MAC protocol is capable of providing differentiated service and resolves co-channel interference in the event of multiple co-located BANs in a vicinity. We report the design and implementation details of BANMAC integrated with the IEEE 802.15.4 protocol stack. We present experimental data which show that the packet loss rate (PLR) of BANMAC is significantly lower as compared to that of the IEEE 802.15.4 MAC. For comparable PLR, the power consumption of BANMAC is also significantly lower than that of the IEEE 802.15.4. For co-located networks, the convergence time to find a conflict-free channel allocation was approximately 1 s for the centralized coordination mechanism and was approximately 4 s for the distributed coordination mechanism.
Resumo:
We present an algorithm for bandwidth allocation for delay-sensitive traffic in multi-hop wireless sensor networks. Our solution considers both periodic as well as aperiodic real-time traffic in an unified manner. We also present a distributed MAC protocol that conforms to the bandwidth allocation and thus satisfies the latency requirements of realtime traffic. Additionally, the protocol provides best-effort service to non real-time traffic. We derive the utilization bounds of our MAC protocol.
Resumo:
Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented
Resumo:
We discuss the development of a simple globally prioritized multi-channel medium access control (MAC) protocol for wireless networks. This protocol provides hard pre-run-time real-time guarantees to sporadic message streams, exploits a very large fraction of the capacity of all channels for hard real-time traffic and also makes it possible to fully utilize the channels with non real-time traffic when hard real-time messages do not request to be transmitted. The potential of such protocols for real-time applications is discussed and a schedulability analysis is also presented.
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.
Resumo:
The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling technology for time sensitive wireless sensor networks thanks to its Guaranteed-Time Slot (GTS) mechanism in the beacon-enabled mode. However, the protocol only supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTSs may be only partially used, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of a GTS by multiple nodes, while all their (delay, bandwidth) requirements are still satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our proposal improves the bandwidth utilization compared to the explicit allocation used in the IEEE 802.15.4 protocol standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons.
Resumo:
A bi-enzymatic biosensor (LACCTYRAuNPsCS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACCTYRAuNPsCS/GPE exhibited an improved MichaelisMenten kinetic constant (26.9 0.5 M) when compared with LACCAuNPsCS/GPE (37.8 0.2 M) and TYRAuNPsCS/GPE (52.3 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.6810 9 1.1810 10 2.1510 7 3.4110 9 M), high accuracy, sensitivity (1.13106 8.11104 2.19108 2.51107 %inhibition M 1), repeatability (1.25.8% RSD), reproducibility (3.26.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 0.3% (lemon) to 97.8 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
As quinoxalinas so compostos heterocclicos que tm, entre outras, capacidades antimicrobianas, inclusivamente contra bactrias resistentes aos antimicrobianos convencionais. Os mecanismos pelos quais estes compostos exercem a sua atividade ainda no est completamente esclarecido. O objetivo do presente estudo avaliar o efeito redox em sinergismo/antagonismo com as quinoxalinas em modelos de bactrias com e sem resistncias a antimicrobianos. No que se refere aos compostos foram utilizados a quinoxalina 1,4-dixido (QNX), 2-metil-3-benzilquinoxalina-1,4-dixido (2M3BQNX), 2-metilquinoxalina-1,4-dixido (2MQNX) e a 2-amino-3-cianoquinoxalina-1,4-dixido (2A3CQNX). Quanto aos modelos procariotas, foram utilizados a Salmonella enterica, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus saprophyticus, Enterobacter aerogenes, Enterobacter cloacae, Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300, Escherichia coli TEM 201 e Escherichia coli TEM 180. Nos compostos qumicos em que se verificou a Concentrao Mnima Inibitria (CMI), realizou-se o estudo do comportamento do crescimento bacteriano. Relativamente ao estado redox, foi avaliado para cada estirpe sensvel, atravs do rcio GSH/GSSG, nas doses inibitrias e no inibitrias de cada composto. Os resultados apresentam que todos os compostos testados, exceo do 2M3BQNX, tm atividade antimicrobiana na maioria das estirpes, excetuando a E. faecalis e a S. saprophyticus. Os rcios GSH/GSSG apontam para o efeito oxidante em K. pneumoniae e S. enterica e antioxidante na E. aerogenes. A concluso do estudo sugere que os compostos apresentam elevada capacidade antibacteriana e influncia no equilbrio redox das bactrias, podendo contribuir para o esclarecimento do mecanismo de ao dos derivados das quinoxalinas 1-4 dixido, nas bactrias.
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonias threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breaths ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.