3 resultados para Resource Description and Access (RDA)
em Instituto Politécnico do Porto, Portugal
Resumo:
Framed on a wider project on Individual Human Resource Management and Development (HRMD), this project aims to explore Individual Career Management and Development (CMD) as an emergent professional field of HRMD.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.
Resumo:
This article presents a work-in-progress version of a Dublin Core Application Profile (DCAP) developed to serve the Social and Solidarity Economy (SSE). Studies revealed that this community is interested in implementing both internal interoperability between their Web platforms to build a global SSE e-marketplace, and external interoperability among their Web platforms and external ones. The Dublin Core Application Profile for Social and Solidarity Economy (DCAP-SSE) serves this purpose. SSE organisations are submerged in the market economy but they have specificities not taken into account in this economy. The DCAP-SSE integrates terms from well-known metadata schemas, Resource Description Framework (RDF) vocabularies or ontologies, in order to enhance interoperability and take advantage of the benefits of the Linked Open Data ecosystem. It also integrates terms from the new essglobal RDF vocabulary which was created with the goal to respond to the SSE-specific needs. The DCAP-SSE also integrates five new Vocabulary Encoding Schemes to be used with DCAP-SSE properties. The DCAP development was based on a method for the development of application profiles (Me4MAP). We believe that this article has an educational value since it presents the idea that it is important to base DCAP developments on a method. This article shows the main results of applying such a method.