56 resultados para Redes Neurais Artificiais
em Instituto Politécnico do Porto, Portugal
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.
Resumo:
Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Neste trabalho pretende-se introduzir os conceitos associados às redes neuronais e a sua aplicação no controlo de sistemas, neste caso na área da robótica autónoma. Foi utilizado um AGV de modo a testar experimentalmente um controlo através de uma rede neuronal artificial. A grande vantagem das redes neuronais artificiais é estas poderem ser ensinadas a funcionarem como se pretende. A partir desta caraterística foram efetuadas duas abordagens na implementação do AGV disponibilizado. A primeira abordagem ensinava a rede neuronal a funcionar como o controlo por lógica difusa que foi implementado no AGV aquando do seu desenvolvimento. A segunda abordagem foi ensinar a rede neuronal artificial a funcionar a partir de dados retirados de um controlo remoto simples implementado no AGV. Ambas as abordagens foram inicialmente implementadas e simuladas no MATLAB, antes de se efetuar a sua implementação no AGV. O MATLAB é utilizado para efetuar o treino das redes neuronais multicamada proactivas através do algoritmo de treino por retropropagação de Levenberg-Marquardt. A implementação de uma rede neuronal artificial na primeira abordagem foi implementada em três fases, MATLAB, posteriormente linguagem de programação C no computador e por fim, microcontrolador PIC no AGV, permitindo assim diferenciar o desenvolvimento destas técnicas em várias plataformas. Durante o desenvolvimento da segunda abordagem foi desenvolvido uma aplicação Android que permite monitorizar e controlar o AGV remotamente. Os resultados obtidos pela implementação da rede neuronal a partir do controlo difuso e do controlo remoto foram satisfatórios, pois o AGV percorria os percursos testados corretamente, em ambos os casos. Por fim concluiu-se que é viável a aplicação das redes neuronais no controlo de um AGV. Mais ainda, é possível utilizar o sistema desenvolvido para implementar e testar novas RNA.
Resumo:
A presente dissertação apresenta o estudo de previsão do diagrama de carga de subestações da Rede Elétrica Nacional (REN) utilizando redes neuronais, com o intuito de verificar a viabilidade do método utilizado, em estudos futuros. Atualmente, a energia elétrica é um bem essencial e desempenha um papel fundamental, tanto a nível económico do país, como a nível de conforto e satisfação individual. Com o desenvolvimento do setor elétrico e o aumento dos produtores torna-se importante a realização da previsão de diagramas de carga, contribuindo para a eficiência das empresas. Esta dissertação tem como objetivo a utilização do modelo das redes neuronais artificiais (RNA) para criar uma rede capaz de realizar a previsão de diagramas de carga, com a finalidade de oferecer a possibilidade de redução de custos e gastos, e a melhoria de qualidade e fiabilidade. Ao longo do trabalho são utilizados dados da carga (em MW), obtidos da REN, da subestação da Prelada e dados como a temperatura, humidade, vento e luminosidade, entre outros. Os dados foram devidamente tratados com a ajuda do software Excel. Com o software MATLAB são realizados treinos com redes neuronais, através da ferramenta Neural Network Fitting Tool, com o objetivo de obter uma rede que forneça os melhores resultados e posteriormente utiliza-la na previsão de novos dados. No processo de previsão, utilizando dados reais das subestações da Prelada e Ermesinde referentes a Março de 2015, comprova-se que com a utilização de RNA é possível obter dados de previsão credíveis, apesar de não ser uma previsão exata. Deste modo, no que diz respeito à previsão de diagramas de carga, as RNA são um bom método a utilizar, uma vez que fornecem, à parte interessada, uma boa previsão do consumo e comportamento das cargas elétricas. Com a finalização deste estudo os resultados obtidos são no mínimo satisfatórios. Consegue-se alcançar através das RNA resultados próximos aos valores que eram esperados, embora não exatamente iguais devido à existência de uma margem de erro na aprendizagem da rede neuronal.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
A liberalização dos mercados de energia e a utilização intensiva de produção distribuída tem vindo a provocar uma alteração no paradigma de operação das redes de distribuição de energia elétrica. A continuidade da fiabilidade das redes de distribuição no contexto destes novos paradigmas requer alterações estruturais e funcionais. O conceito de Smart Grid vem permitir a adaptação das redes de distribuição ao novo contexto. Numa Smart Grid os pequenos e médios consumidores são chamados ao plano ativo das participações. Este processo é conseguido através da aplicação de programas de demand response e da existência de players agregadores. O uso de programas de demand response para alcançar benefícios para a rede encontra-se atualmente a ser estudado no meio científico. Porém, existe a necessidade de estudos que procurem benefícios para os pequenos e médios consumidores. O alcance dos benefícios para os pequenos e médios consumidores não é apenas vantajoso para o consumidor, como também o é para a rede elétrica de distribuição. A participação, dos pequenos e médios consumidores, em programas de demand response acontece significativamente através da redução de consumos energéticos. De modo a evitar os impactos negativos que podem provir dessas reduções, o trabalho aqui proposto faz uso de otimizações que recorrem a técnicas de aprendizagem através da utilização redes neuronais artificiais. Para poder efetuar um melhor enquadramento do trabalho com as Smart Grids, será desenvolvido um sistema multiagente capaz de simular os principais players de uma Smart Grid. O foco deste sistema multiagente será o agente responsável pela simulação do pequeno e médio consumidor. Este agente terá não só que replicar um pequeno e médio consumidor, como terá ainda que possibilitar a integração de cargas reais e virtuais. Como meio de interação com o pequeno e médio consumidor, foi desenvolvida no âmbito desta dissertação um sistema móvel. No final do trabalho obteve-se um sistema multiagente capaz de simular uma Smart Grid e a execução de programas de demand response, sSendo o agente representante do pequeno e médio consumidor capaz de tomar ações e reações de modo a poder responder autonomamente aos programas de demand response lançados na rede. O desenvolvimento do sistema permite: o estudo e análise da integração dos pequenos e médios consumidores nas Smart Grids por meio de programas de demand response; a comparação entre múltiplos algoritmos de otimização; e a integração de métodos de aprendizagem. De modo a demonstrar e viabilizar as capacidades de todo o sistema, a dissertação inclui casos de estudo para as várias vertentes que podem ser exploradas com o sistema desenvolvido.
Resumo:
No contexto da penetração de energias renováveis no sistema elétrico, Portugal ocupa uma posição de destaque a nível mundial, muito devido à produção de eólica. Com um sistema elétrico com forte presença de fontes de energia renováveis, novos desafios surgem, nomeadamente no caso da energia eólica pela sua imprevisibilidade e volatilidade. O recurso eólico embora seja ilimitado não é armazenável, surgindo assim a necessidade da procura de modelos de previsão de produção de energia elétrica dos parques eólicos de modo a permitir uma boa gestão do sistema. Nesta dissertação apresentam-se as contribuições resultantes de um trabalho de pesquisa e investigação sobre modelos de previsão da potência elétrica com base em valores de previsões meteorológicas, nomeadamente, valores previstos da intensidade e direção do vento. Consideraram-se dois tipos de modelos: paramétricos e não paramétricos. Os primeiros são funções polinomiais de vários graus e a função sigmoide, os segundos são redes neuronais artificiais. Para a estimação dos modelos e respetiva validação, são usados dados recolhidos ao longo de dois anos e três meses no parque eólico do Pico Alto de potência instalada de 6 MW. De forma a otimizar os resultados da previsão, consideram-se diferentes classes de perfis de produção, definidas com base em quatro e oito direções do vento, e ajustam-se os modelos propostos em cada uma das classes. São apresentados e discutidos resultados de uma análise comparativa do desempenho dos diferentes modelos propostos para a previsão da potência.
Resumo:
Os Transformadores de potência são máquinas de elevada importância ao nível dos Sistemas Elétricos de Energia (SEE) uma vez que são estas máquinas que possibilitam a interligação dos diferentes níveis de tensão da rede e a transmissão de energia elétrica em Corrente Alternada (CA). Geralmente, estas máquinas são de grandes dimensões e de elevado nível de complexidade construtiva. Caracterizam-se por possuírem períodos de vida útil bastante elevados (vinte a trinta anos) e preços elevados, o que conduz a um nível de exigência de fiabilidade muito elevada, uma vez que não e viável a existência de muitos equipamentos de reserva nos SEE. Com o objetivo de tentar maximizar o período de vida útil dos transformadores de potência e a sua fiabilidade, tenta-se, cada vez mais, implementar conceitos de manutenção preventiva a este tipo de máquinas. No entanto, a gestão da sua vida útil e extremamente complexa na medida em que, estas máquinas têm vários componentes cruciais e suscetiveis de originar falhas e, quase todos eles, encontram-se no interior de uma cuba. Desta forma, não e possível obter uma imagem do seu estado, em tempo real, sem colocar o transformador fora de serviço, algo que acarreta custos elevados. Por este motivo, desenvolveu-se uma técnica que permite obter uma indicação do estado do transformador, em tempo real, sem o retirar de serviço, colhendo amostras do óleo isolante e procedendo a sua análise físico-química e Analise Gases Dissolvidos (DGA). As análises aos óleos isolantes tem vindo a adquirir uma preponderância muito elevada no diagnóstico de falhas e na analise do estado de conservação destes equipamentos tendo-se desenvolvido regras para interpretação dos parâmetros dos óleos com carácter normativo. Considerando o conhecimento relativo a interpretação dos ensaios físico-químicos e DGA ao oleol, e possível desenvolver ferramentas capazes de otimizar essas mesmas interpretações e aplicar esse conhecimento no sentido de prever a sua evolução, assim como o surgimento de possíveis falhas em transformadores, para assim otimizar os processos de manutenção. Neste campo as Redes Neuronais Artificiais (RNAs) têm um papel fundamental
Resumo:
Introdução: Das possíveis alterações decorrentes da lesão por Acidente Vascular Encefálico (AVE) é de evidenciar as alterações de controlo postural (CP) e aumento do stiffness. A intervenção na reabilitação neuro-motora baseia-se na capacidade intrínseca do Sistema Nervoso Central (SNC) compensar danos estruturais através da reorganização das redes neurais. Objectivo(s): Descrever as modificações do comportamento e tempos de ativação dos músculos solear e braquiorradial no início da marcha e primeira subfase das sequências de movimento de sentado para de pé e de pé para sentado. Pretendeu-se apresentar também as modificações do stiffness do cotovelo Métodos: A amostra consistiu em 5 participantes com média de idade de 44 anos, 2 do sexo feminino e 3 do masculino que sofreram um AVE. Foi implementado um programa de reabilitação para cada, por um período de 3 meses, com 2 momentos de avaliação (M0 e M1). A eletromiografia foi recolhida do solear, braquiorradial, biceps e triceps. O dinamómetro isocinético monitorizou o torque e a amplitude do cotovelo na extensão passiva. Foram calculados os tempos de ativação muscular e o valor de stiffness. Resultados: Observou-se nos 5 participantes uma modificação do comportamento dos músculos solear e braquiorradial ipsilesional e contralesional no sentido da inibição de M0 para M1 no sentar levantar. Esta também foi observada na sequência de pé para sentado e no início da marcha, sendo mais variável entre participantes. Verificou-se que o stiffness do membro superior contralesional apresentou uma modificação no sentido da diminuição em todas as amplitudes. O mesmo sucedeu com membro superior ipsilesional sobretudo nas amplitudes intermédias, excepto no B e D. Conclusão: De M0 para M1 verificou-se a modificação dos tempos e do comportamento dos músculos antigravíticos como o solear e o braquiorradial nas tarefas funcionais e uma modificação do stiffness passivo do cotovelo.
Resumo:
Nos últimos anos o consumo de energia elétrica produzida a partir de fontes renováveis tem aumentado significativamente. Este aumento deve-se ao impacto ambiental que recursos como o petróleo, gás, urânio, carvão, entre outros, têm no meio ambiente e que são notáveis no diaa- dia com as alterações climáticas e o aquecimento global. Por sua vez, estes recursos têm um ciclo de vida limitado e a dada altura tornar-se-ão escassos. A preocupação de uma melhoria contínua na redução dos impactos ambientais levou à criação de Normas para uma gestão mais eficiente e sustentável do consumo de energia nos edifícios. Parte da eletricidade vendida pelas empresas de comercialização é produzida através de fontes renováveis, e com a recente publicação do Decreto de Lei nº 153/2014 de 20 outubro de 2014 que regulamenta o autoconsumo, permitindo que também os consumidores possam produzir a sua própria energia nas suas residências para reduzir os custos com a compra de eletricidade. Neste contexto surgiram os edifícios inteligentes. Por edifícios inteligentes entende-se que são edifícios construídos com materiais que os tornam mais eficientes, possuem iluminação e equipamentos elétricos mais eficientes, e têm sistemas de produção de energia que permitem alimentar o próprio edifício, para um consumo mais sustentado. Os sistemas implementados nos edifícios inteligentes visam a monitorização e gestão da energia consumida e produzida para evitar desperdícios de consumo. O trabalho desenvolvido visa o estudo e a implementação de Redes Neuronais Artificiais (RNA) para prever os consumos de energia elétrica dos edifícios N e I do ISEP/GECAD, bem como a previsão da produção dos seus painéis fotovoltáicos. O estudo feito aos dados de consumo permitiu identificar perfis típicos de consumo ao longo de uma semana e de que forma são influenciados pelo contexto, nomeadamente, com os dias da semana versus fim-de-semana, e com as estações do ano, sendo analisados perfis de consumo de inverno e verão. A produção de energia através de painéis fotovoltaicos foi também analisada para perceber se a produção atual é suficiente para satisfazer as necessidades de consumo dos edifícios. Também foi analisada a possibilidade da produção satisfazer parcialmente as necessidades de consumos específicos, por exemplo, da iluminação dos edifícios, dos seus sistemas de ar condicionado ou dos equipamentos usados.
Resumo:
Devido ao facto de hoje em dia a informação que é processada numa rede informática empresarial, ser cada vez mais de ordem confidencial, torna-se necessário que essa informação esteja o mais protegida possível. Ao mesmo tempo, é necessário que esta a informação esteja disponível com a devida rapidez, para os parceiros certos, num mundo cada vez mais globalizado. Com este trabalho pretende-se efectuar o estudo e implementação da segurança, numa pequena e genérica rede de testes, que facilmente seja extrapolada, para uma rede da dimensão, de uma grande empresa com potenciais ramificações por diversos locais. Pretende-se implementar/monitorização segurança quer externamente, (Internet service provider ISP) quer internamente (activos de rede, postos de trabalho/utilizadores). Esta análise é baseada na localização (local, wireless ou remota), e, sempre que seja detectada qualquer anomalia, seja identificada a sua localização, sendo tomadas automaticamente acções de protecção. Estas anomalias poderão ser geridas recorrendo a ferramentas open source ou comerciais, que façam a recolha de toda a informação necessária, e tomem acções de correcção ou alerta mediante o tipo de anomalia.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores