7 resultados para Receptor Noise
em Instituto Politécnico do Porto, Portugal
Resumo:
Aims Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obese-allergen sensitized mice. Main methods Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1 +) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings Obesity and allergen-sensitization together increased the number of LYVE-1 + lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
Abstract: Ototoxic substances have been associated to damage of the auditory system, and its effects are potentiated by noise exposure. The present study aims at analyzing auditory changes from combined exposure to noise and organic solvents, through a pilot study in the furniture industry sector. Audiological tests were performed on 44 workers, their levels of exposure to toluene, xylene and ethylbenzene were determined and the levels of noise exposure were evaluated. The results showed that workers are generally exposed to high noise levels and cabin priming filler and varnish sector workers have high levels of exposure to toluene. However, no hearing loss was registered among the workers. Workers exposed simultaneously to noise and ototoxic substances do not have a higher degree of hearing loss than those workers exposed only to noise. Thus, the results of this study did not show that the combined exposure to noise and the organic solvent is associated with hearing disorders.
Resumo:
Aims: Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obeseallergen sensitized mice. Main methods: Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1+) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings: Obesity and allergen-sensitization together increased the number of LYVE-1+ lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance: The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
In this paper a new method for the calculation of the fractional expressions in the presence of sensor redundancy and noise, is presented. An algorithm, taking advantage of the signal characteristics and the sensor redundancy, is tuned and optimized through genetic algorithms. The results demonstrate the good performance for different types of expressions and distinct levels of noise.
Resumo:
For musicians, the impact of noise exposure is not yet fully characterized. Some inconsistencies can be found in the methodology used to evaluate noise exposure. This study aims to analyze the noise exposure of musicians in a symphonic orchestra to understand their risk for hearing loss, applying the methodology proposed by ISO 9612:2009. Noise levels were monitored among musicians during the rehearsal of eight different repertoires. Test subjects were selected according to their instrument and position in the orchestra. Participants wore noise dosimeters throughout the rehearsals. A sound meter was used to analyze the exposure of the conductor. The results showed that musicians are exposed to high noise levels that can damage hearing. Brass, woodwind and percussion and timpani musicians were exposed to noise levels in excess of the upper exposure action level of 85 dB (A), while the other instrumental groups had a lower exposure action level of 80 dB (A). Percussion musicians were exposed to high peak noise levels of 135 dB (C). Sound levels varied by instrument, repertoire and position. Octave frequency analyses showed differences among musicians. This study suggests that musicians are at risk for hearing loss. There is a need for more effective guidelines applicable to all countries, which should define standardized procedures for determining musician noise exposure and should allow exposure level normalization to the year, including different repertoires.
Resumo:
Evidence indicates that exposure to high levels of noise adversely affects human health, and these effects are dependent upon various factors. In hospitals, there are many sources of noise, and high levels exert an impact on patients and staff, increasing both recovery time and stress, respectively. The goal of this pilot study was to develop, implement and evaluate the effectiveness of a training program (TP) on noise reduction in a Neonatal Intensive Care Units (NICU) by comparing the noise levels before and after the implementation of the program. A total of 79 health professionals participated in the study. The measurements of sound pressure levels took into account the layout of the unit and location of the main sources of noise. General results indicated that LAeq levels before implementation of the training program were often excessive, ranging from 48.7 ± 2.94 dBA to 71.7 ± 4.74 dBA, exceeding international guidelines. Similarly following implementation of the training program noise levels remained unchanged (54.5 ± 0.49 dBA to 63.9 ± 4.37 dBA), despite a decrease in some locations. There was no significant difference before and after the implementation of TP. However a significant difference was found for Lp, Cpeak, before and after training staff, suggesting greater care by healthcare professionals performing their tasks. Even recognizing that a TP is quite important to change behaviors, this needs to be considered in a broader context to effectively control noise in the NICU.
Resumo:
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.