4 resultados para Real blow up

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

D. João de Magalhães e Avelar (1754-1833) formou aquela que, ao tempo, era a maior biblioteca privada portuguesa. Com cerca de 36000 volumes, foi elogiada por personalidades nacionais e estrangeiras, por aliar à quantidade de volumes inúmeros e valiosíssimos manuscritos. Formada ao longo dos séculos XVIII e XIX, durante mais de 30 anos, originou, em 1833, o primeiro núcleo da actual Biblioteca Pública Municipal do Porto. Numa época em que possuir livros era sinónimo de prestígio social mas num período em que quase não havia tradição de bibliotecas públicas no nosso país, contrariamente ao que acontecia noutras realidades, a livraria privada de Avelar formou, com outras, a Real Biblioteca Pública da Cidade do Porto. Em 1833, aquando do primeiro aniversário da entrada do exército liberal no Porto, por decreto, criou-se a biblioteca portuense. Estabelecida na casa que servia de Hospício dos Religiosos de Santo António do Val da Piedade, à praça da Cordoaria, tinha como objectivo satisfazer a utilidade pública, estando aberta todos os dias, excepto domingos e feriados. Propriedade da cidade do Porto, ficava sujeita à administração da Câmara que se obrigava à sua guarda, manutenção, conservação, bem como à constante aquisição de espólio. Como veremos, tratou-se de um processo conflituoso mas o Porto obtinha, definitivamente, a sua biblioteca pública.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.