28 resultados para Raman scattering spectroscopy
em Instituto Politécnico do Porto, Portugal
Resumo:
Cu2ZnSnS4 (CZTS) is a p-type semiconductor that has been seen as a possible low-cost replacement for Cu(In,Ga)Se2 in thin film solar cells. So far compound has presented difficulties in its growth, mainly, because of the formation of secondary phases like ZnS, CuxSnSx+1, SnxSy, Cu2−xS and MoS2. X-ray diffraction analysis (XRD), which is mostly used for phase identification cannot resolve some of these phases from the kesterite/stannite CZTS and thus the use of a complementary technique is needed. Raman scattering analysis can help distinguishing these phases not only laterally but also in depth. Knowing the absorption coefficient and using different excitation wavelengths in Raman scattering analysis, one is capable of profiling the different phases present in multi-phase CZTS thin films. This work describes in a concise form the methods used to grow chalcogenide compounds, such as, CZTS, CuxSnSx+1, SnxSy and cubic ZnS based on the sulphurization of stacked metallic precursors. The results of the films’ characterization by XRD, electron backscatter diffraction and scanning electron microscopy/energy dispersive spectroscopy techniques are presented for the CZTS phase. The limitation of XRD to identify some of the possible phases that can remain after the sulphurization process are investigated. The results of the Raman analysis of the phases formed in this growth method and the advantage of using this technique in identifying them are presented. Using different excitation wavelengths it is also analysed the CZTS film in depth showing that this technique can be used as non destructive methods to detect secondary phases.
Resumo:
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.
Resumo:
In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.
Resumo:
Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.
Resumo:
In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis. The hole density, space charge region width and band gap energy were estimated from the external quantum efficiency measurements. A MoS2 layer that formed during the sulphurization process was also identified and analyzed in this work. The solar cells had the following structure: soda lime glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Al grid. The best solar cell showed an opencircuit voltage of 345 mV, a short-circuit current density of 4.42 mA/cm2, a fill factor of 44.29% and an efficiency of 0.68% under illumination in simulated standard test conditions: AM 1.5 and 100 mW/cm2.
Resumo:
In this work, we show a set of growth conditions, for the two step process, with which the growth of CZTSe is successful and reproducible. The properties of the best CTZSe thin films grown by this method were examined by SEM/EDS, XRD, Raman scattering, AFM/EFM, transmittance and reflectance measurements, photoluminescence (PL) measurements and hot point probe. A broad emission band was observed in the photoluminescence spectrum of the CZTSe thin film. The band gap energy was estimated to be around 1.05 eV at room temperature, using the transmittance and reflectance data, and CZTSe samples show p-type conductivity with the hot point probe. The different characterization techniques show that we could grow single phase CZTSe thin films with our optimized process conditions.
Resumo:
Cu2ZnSnSe4 (CZTSe) is a p-type semiconductor with a high absorption coefficient, 104 to 105 cm-1, and is being seen as a possible replacement for Cu(In,Ga)Se2 in thin film solar cells. Yet, there are some fundamental properties of CZTSe that are not well known, one of them is its band gap. In order to resolve its correct value it is necessary to improve the growth conditions to ensure that single phase crystalline thin films are obtained. One of the problems encountered when growing CZTSe is the loss of Sn through evaporation of SnSe. Stoichiometric films are then difficult to obtain and usually there are other phases present. One possible way to overcome this problem is to increase the pressure of growth of CZTSe. This can be done by introducing an atmosphere of an inert gas like Ar or N2. In this work we report the results of morphological, structural and optical studies of the properties of CZTSe thin films grown by selenization of DC magnetron sputtered metallic layers under different Ar pressures. The films are analysed by SEM/EDS, Raman scattering and XRD.
Resumo:
Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with their band gap energies around 1.45 eV and 1.0 eV, respectively, can be used as the absorber layer in thin film solar cells. By using a mixture of both compounds, Cu2ZnSn(S,Se)4 (CZTSSe), a band gap tuning may be possible. The latter material has already shown promising results such as solar cell efficiencies up to 10.1%. In this work, CZTSSe thin films were grown in order to study its structure and to establish the best growth precursors. SEM micrographs reveal an open columnar structure for most samples and EDS composition profiling of the cross sections show different selenium gradients. X-ray diffractograms show different shifts of the kesterite/stannite (1 1 2) peak, which indicate the presence of CZTSSe. From Raman scattering analysis, it was concluded that all samples had traces of CZTS and CZTSSe. The composition of the CZTSSe layer was estimated using X-ray diffraction and Raman scattering and both results were compared. It was concluded that Se diffused more easily in precursors with ternary Cu–Sn–S phases and metallic Zn than in precursors with ZnS and/or CZTS already formed. It was also showed that a combination of X-ray diffraction and Raman scattering can be used to estimate the ratio of S per Se in CZTSSe samples.
Resumo:
TiO2 films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. It has been found that the sputtering pressure is a very important parameter for the structure of the deposited TiO2 films. When the pressure is lower than 1 Pa, the deposited has a dense structure and shows a preferred orientation along the [101] direction. However, the nanorod structure has been obtained as the sputtering pressure is higher than 1 Pa. These nanorods structure TiO2 film shows a preferred orientation along the [110] direction. The x-ray diffraction and the Raman scattering measurements show both the dense and the nanostructure TiO2 films have only an anatase phase, no other phase has been obtained. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. The TEM measurement shows that the nanorods have a very rough surface. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different sputtering pressures as photoelectrode. And the effect of the sputtering pressure on the properties of the photoelectric conversion of the DSSCs has been studied.
Resumo:
TiO2 nanorodswere prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electronmicroscopy images showthat the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimumphotoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.
Resumo:
In this work, we investigated structural, morphological, electrical, and optical properties from a set of Cu2ZnSnS4 thin films grown by sulfurization of metallic precursors deposited on soda lime glass substrates coated with or without molybdenum. X-ray diffraction and Raman spectroscopy measurements revealed the formation of single-phase Cu2ZnSnS4 thin films. A good crystallinity and grain compactness of the film was found by scanning electron microscopy. The grown films are poor in copper and rich in zinc, which is a composition close to that of the Cu2ZnSnS4 solar cells with best reported efficiency. Electrical conductivity and Hall effect measurements showed a high doping level and a strong compensation. The temperature dependence of the free hole concentration showed that the films are nondegenerate. Photoluminescence spectroscopy showed an asymmetric broadband emission. The experimental behavior with increasing excitation power or temperature cannot be explained by donor-acceptor pair transitions. A model of radiative recombination of an electron with a hole bound to an acceptor level, broadened by potential fluctuations of the valence-band edge, was proposed. An ionization energy for the acceptor level in the range 29–40 meV was estimated, and a value of 172 ±2 meV was obtained for the potential fluctuation in the valence-band edge.
Resumo:
In this report, we propose an AC response equivalent circuit model to describe the admittance measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic precursors. This circuit describes the contact resistances, the back contact, and the heterojunction with two trap levels. The study of the back contact resistance allowed the estimation of a back contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage, 360 mV; and short circuit current density, 6.8 mA/cm2.
Resumo:
A dc magnetron sputtering-based method to grow high-quality Cu2ZnSnS4 (CZTS) thin films, to be used as an absorber layer in solar cells, is being developed. This method combines dc sputtering of metallic precursors with sulfurization in S vapour and with post-growth KCN treatment for removal of possible undesired Cu2−xS phases. In this work, we report the results of a study of the effects of changing the precursors’ deposition order on the final CZTS films’ morphological and structural properties. The effect of KCN treatment on the optical properties was also analysed through diffuse reflectance measurements. Morphological, compositional and structural analyses of the various stages of the growth have been performed using stylus profilometry, SEM/EDS analysis, XRD and Raman Spectroscopy. Diffuse reflectance studies have been done in order to estimate the band gap energy of the CZTS films. We tested two different deposition orders for the copper precursor, namely Mo/Zn/Cu/Sn and Mo/Zn/Sn/Cu. The stylus profilometry analysis shows high average surface roughness in the ranges 300–550 nm and 230–250 nm before and after KCN treatment, respectively. All XRD spectra show preferential growth orientation along (1 1 2) at 28.45◦. Raman spectroscopy shows main peaks at 338 cm−1 and 287 cm−1 which are attributed to Cu2ZnSnS4. These measurements also confirm the effectiveness of KCN treatment in removing Cu2−xS phases. From the analysis of the diffuse reflectance measurements the band gap energy for both precursors’ sequences is estimated to be close to 1.43 eV. The KCN-treated films show a better defined absorption edge; however, the band gap values are not significantly affected. Hot point probe measurements confirmed that CZTS had p-type semiconductor behaviour and C–V analysis was used to estimate the majority carrier density giving a value of 3.3 × 1018 cm−3.
Resumo:
We report the results of the growth of Cu-Sn-S ternary chalcogenide compounds by sulfurization of dc magnetron sputtered metallic precursors. Tetragonal Cu2SnS3 forms for a maximum sulfurization temperature of 350 ºC. Cubic Cu2SnS3 is obtained at sulfurization temperatures above 400 ºC. These results are supported by XRD analysis and Raman spectroscopy measurements. The latter analysis shows peaks at 336 cm-1, 351 cm-1 for tetragonal Cu2SnS3, and 303 cm-1, 355 cm-1 for cubic Cu2SnS3. Optical analysis shows that this phase change lowers the band gap from 1.35 eV to 0.98 eV. At higher sulfurization temperatures increased loss of Sn is expected in the sulphide form. As a consequence, higher Cu content ternary compounds like Cu3SnS4 grow. In these conditions, XRD and Raman analysis only detected orthorhombic (Pmn21) phase (petrukite). This compound has Raman peaks at 318 cm-1, 348 cm-1 and 295 cm-1. For a sulfurization temperature of 450 ºC the samples present a multi-phase structure mainly composed by cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4. For higher temperatures, the samples are single phase and constituted by orthorhombic (Pmn21) Cu3SnS4. Transmittance and reflectance measurements were used to estimate a band gap of 1.60 eV. For comparison we also include the results for Cu2ZnSnS4 obtained using similar growth conditions.
Resumo:
In this work, SnxSy thin films have been grown on soda-lime glass substrates by sulphurization of metallic precursors in a nitrogen plus sulphur vapour atmosphere. Different sulphurization temperatures were tested, ranging from 300 °C to 520 °C. The resulting phases were structurally investigated by X-Ray Diffraction and Raman spectroscopy. Composition was studied using Energy Dispersive Spectroscopy being then correlated with the sulphurization temperature. Optical measurements were performed to obtain transmittance and reflectance spectra, from which the energy band gaps, were estimated. The values obtained were 1.17 eV for the indirect transition and for the direct transition the values varied from 1.26 eV to 1.57 eV. Electrical characterization using Hot Point Probe showed that all samples were p-type semiconductors. Solar cells were built using the structure: SLG/Mo/SnxSy/CdS/ZnO:Ga and the best result for solar cell efficiency was 0.17%.