2 resultados para Radial basis function network
em Instituto Politécnico do Porto, Portugal
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.