4 resultados para RF sputtering

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we employed a hybrid method, combining RF-magnetron sputtering with evaporation, for the deposition of tailor made metallic precursors, with varying number of Zn/Sn/Cu (ZTC) periods and compared two approaches to sulphurization. Two series of samples with 1×, 2× and 4× ZTC periods have been prepared. One series of precursors was sulphurized in a tubular furnace directly exposed to a sulphur vapour and N2+5% H2 flux at a pressure of 5.0×10+4 Pa. A second series of identical precursors was sulphurized in the same furnace but inside a graphite box where sulphur pellets have been evaporated again in the presence of N2+5% H2 and at the same pressure as for the sulphur flux experiments. The morphological and chemical analyses revealed a small grain structure but good average composition for all three films sulphurized in the graphite box. As for the three films sulphurized in sulphur flux grain growth was seen with the increase of the number of ZTC periods whilst, in terms of composition, they were slightly Zn poor. The films' crystal structure showed that Cu2ZnSnS4 is the dominant phase. However, in the case of the sulphur flux films SnS2 was also detected. Photoluminescence spectroscopy studies showed an asymmetric broad band emission whichoccurs in the range of 1–1.5 eV. Clearly the radiative recombination efficiency is higher in the series of samples sulphurized in sulphur flux. We have found that sulphurization in sulphur flux leads to better film morphology than when the process is carried out in a graphite box in similar thermodynamic conditions. Solar cells have been prepared and characterized showing a correlation between improved film morphology and cell performance. The best cells achieved an efficiency of 2.4%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of the growth of Cu-Sn-S ternary chalcogenide compounds by sulfurization of dc magnetron sputtered metallic precursors. Tetragonal Cu2SnS3 forms for a maximum sulfurization temperature of 350 ºC. Cubic Cu2SnS3 is obtained at sulfurization temperatures above 400 ºC. These results are supported by XRD analysis and Raman spectroscopy measurements. The latter analysis shows peaks at 336 cm-1, 351 cm-1 for tetragonal Cu2SnS3, and 303 cm-1, 355 cm-1 for cubic Cu2SnS3. Optical analysis shows that this phase change lowers the band gap from 1.35 eV to 0.98 eV. At higher sulfurization temperatures increased loss of Sn is expected in the sulphide form. As a consequence, higher Cu content ternary compounds like Cu3SnS4 grow. In these conditions, XRD and Raman analysis only detected orthorhombic (Pmn21) phase (petrukite). This compound has Raman peaks at 318 cm-1, 348 cm-1 and 295 cm-1. For a sulfurization temperature of 450 ºC the samples present a multi-phase structure mainly composed by cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4. For higher temperatures, the samples are single phase and constituted by orthorhombic (Pmn21) Cu3SnS4. Transmittance and reflectance measurements were used to estimate a band gap of 1.60 eV. For comparison we also include the results for Cu2ZnSnS4 obtained using similar growth conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this work is to present and to interpret the change of structure and physical properties of tantalum oxynitride (TaNxOy) thin films, produced by dc reactive magnetron sputtering, by varying the processing parameters. A set of TaNxOy films was prepared by varying the reactive gases flow rate, using a N2/O2 gas mixture with a concentration ratio of 17:3. The different films, obtained by this process, exhibited significant differences. The obtained composition and the interpretation of X-ray diffraction results, shows that, depending on the partial pressure of the reactive gases, the films are: essentially dark grey metallic, when the atomic ratio (N + O)/Ta < 0.1, evidencing a tetragonal β-Ta structure; grey-brownish, when 0.1 < (N + O)/Ta < 1, exhibiting a face-centred cubic (fcc) TaN-like structure; and transparent oxide-type, when (N + O)/Ta > 1, evidencing the existence of Ta2O5, but with an amorphous structure. These transparent films exhibit refractive indexes, in the visible region, always higher than 2.0. The wear resistance of the films is relatively good. The best behaviour was obtained for the films with (N + O)/Ta ≈ 0.5 and (N + O)/Ta ≈ 1.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.