22 resultados para REDOX STATE UNBALANCE
em Instituto Politécnico do Porto, Portugal
Resumo:
As quinoxalinas são compostos heterocíclicos que têm, entre outras, capacidades antimicrobianas, inclusivamente contra bactérias resistentes aos antimicrobianos convencionais. Os mecanismos pelos quais estes compostos exercem a sua atividade ainda não está completamente esclarecido. O objetivo do presente estudo é avaliar o efeito redox em sinergismo/antagonismo com as quinoxalinas em modelos de bactérias com e sem resistências a antimicrobianos. No que se refere aos compostos foram utilizados a quinoxalina 1,4-dióxido (QNX), 2-metil-3-benzilquinoxalina-1,4-dióxido (2M3BQNX), 2-metilquinoxalina-1,4-dióxido (2MQNX) e a 2-amino-3-cianoquinoxalina-1,4-dióxido (2A3CQNX). Quanto aos modelos procariotas, foram utilizados a Salmonella enterica, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus saprophyticus, Enterobacter aerogenes, Enterobacter cloacae, Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300, Escherichia coli TEM 201 e Escherichia coli TEM 180. Nos compostos químicos em que se verificou a Concentração Mínima Inibitória (CMI), realizou-se o estudo do comportamento do crescimento bacteriano. Relativamente ao estado redox, foi avaliado para cada estirpe sensível, através do rácio GSH/GSSG, nas doses inibitórias e não inibitórias de cada composto. Os resultados apresentam que todos os compostos testados, à exceção do 2M3BQNX, têm atividade antimicrobiana na maioria das estirpes, excetuando a E. faecalis e a S. saprophyticus. Os rácios GSH/GSSG apontam para o efeito oxidante em K. pneumoniae e S. enterica e antioxidante na E. aerogenes. A conclusão do estudo sugere que os compostos apresentam elevada capacidade antibacteriana e influência no equilíbrio redox das bactérias, podendo contribuir para o esclarecimento do mecanismo de ação dos derivados das quinoxalinas 1-4 dióxido, nas bactérias.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
As espécies reativas de oxigénio (ROS) estão envolvidas no desenvolvimento de dor neuropática. No entanto, a aplicação clínica de moléculas antioxidantes no tratamento desta patologia tem demonstrado pouca eficácia. A inibição da NADPH oxidase (NOX), uma das principais fontes de ROS, poderá ser uma boa estratégia terapêutica. O nosso grupo verificou que a apocinina (inibidor da NOX) melhora parcialmente os sintomas de dor neuropática e a disfunção redox espinhal no modelo SNI (spared nerve injury). De forma a melhorar este efeito terapêutico, o presente estudo insere-se num projeto maior, que visa identificar as isoformas da NOX envolvidas na fisiopatologia da doença e avaliar o efeito da administração de inibidores específicos para essas isoformas. Assim, propusemo-nos a avaliar a disfunção redox espinhal em fases precoces dador neuropática periférica induzida pelo modelo SNI no Rato, relacionando-a com os comportamentos de dor demonstrados pelos animais. Foram constituídos três grupos experimentais: SNI, sham e naïve, com subgrupos testados e sacrificados aos dias 1, 3, 7 e 14 após a cirurgia. Avaliou-se a sensibilidade mecânica (vonFrey e pinprick) e ao frio (acetona) dos animais, sacrificaram-se e recolheram-se as medulas espinhais para análise imunohistoquímica, com marcadores de dano oxidativo no DNA e de dano nitrosativo. Ao contrário dos animais sham, que demonstraram um comportamento muito próximo dos naïve, os animais SNI desenvolveram alodínia mecânica e ao frio e hiperalgesia mecânica na pata ipsilateral. No entanto, o dano oxidativo no corno dorsal ipsilateral da medula espinhal apresentou-se idêntico nos grupos SNI e sham ao longo dos 14 dias de estudo, não havendo também diferenças entre os cornos ipsi e contralateral à lesão nervosa. É possível que o desenvolvimento de dor neuropática nos animais SNI não se faça acompanhar de disfunção redox espinhal, pelo menos até aos 14 dias pós indução. O facto de a lesão nervosa no modelo SNI se localizar numa porção distal do ciático, ao contrário de outros modelos em que o stresse oxidativo espinhal foi já descrito, poderia explicar essas diferenças. Em todo o caso, considerando que os resultados comportamentais obtidos indicam que as cirurgias SNI e sham causam diferentes níveis de sensibilização nos animais, parece-nos fulcral prolongar os tempos de neuropatia, e executar uma avaliação do estado redox com outros marcadores, de forma a elucidar se, de facto, existem ROS envolvidas nesta sensibilização e, em caso positivo, poder identificar essas espécies, bem como as suas fontes.
Resumo:
To select each node by devices and by contexts in urban computing, users have to put their plan information and their requests into a computing environment (ex. PDA, Smart Devices, Laptops, etc.) in advance and they will try to keep the optimized states between users and the computing environment. However, because of bad contexts, users may get the wrong decision, so, one of the users’ demands may be requesting the good server which has higher security. To take this issue, we define the structure of Dynamic State Information (DSI) which takes a process about security including the relevant factors in sending/receiving contexts, which select the best during user movement with server quality and security states from DSI. Finally, whenever some information changes, users and devices get the notices including security factors, then an automatic reaction can be possible; therefore all users can safely use all devices in urban computing.
Resumo:
Recommendation systems have been growing in number for the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.
Resumo:
Recommendation systems have been growing in number over the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. These approaches contain strengths and weaknesses that need to be evaluated according to the knowledge area in which the system is going to be implemented. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.
Resumo:
Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.
Resumo:
Pesticide exposure during brain development could represent an important risk factor for the onset of neurodegenerative diseases. Previous studies investigated the effect of permethrin (PERM) administered at 34 mg/kg, a dose close to the no observable adverse effect level (NOAEL) from post natal day (PND) 6 to PND 21 in rats. Despite the PERM dose did not elicited overt signs of toxicity (i.e. normal body weight gain curve), it was able to induce striatal neurodegeneration (dopamine and Nurr1 reduction, and lipid peroxidation increase). The present study was designed to characterize the cognitive deficits in the current animal model. When during late adulthood PERM treated rats were tested for spatial working memory performances in a T-maze-rewarded alternation task they took longer to choose for the correct arm in comparison to age matched controls. No differences between groups were found in anxiety-like state, locomotor activity, feeding behavior and spatial orientation task. Our findings showing a selective effect of PERM treatment on the T-maze task point to an involvement of frontal cortico-striatal circuitry rather than to a role for the hippocampus. The predominant disturbances concern the dopamine (DA) depletion in the striatum and, the serotonin (5-HT) and noradrenaline (NE) unbalance together with a hypometabolic state in the medial prefrontal cortex area. In the hippocampus, an increase of NE and a decrease of DA were observed in PERM treated rats as compared to controls. The concentration of the most representative marker for pyrethroid exposure (3-phenoxybenzoic acid) measured in the urine of rodents 12 h after the last treatment was 41.50 µ/L and it was completely eliminated after 96 h.
Resumo:
Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.
Resumo:
Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions.
Resumo:
This paper describes the application of Design State Exploration techniques in the development of a remote lab for projectile motion experiments. The application was enabled by the existence of two independent teams: one composed of a series of internships that started first and another with two grantees that started a few months later. The paper presents evidence on how this approach provided gains in the development process conducted by the second team that benefited from design state exploration studies performed by the first team. This particular aspect is highlighted in relation to the work already presented in the 10th Remote Engineering and Virtual Instrumentation (REV) conference.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.