2 resultados para Pulci, Luigi, 1432-1484.

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the determination of some pesticide residues in must and wine samples was developed using solid-phase microextraction (SPME) and gas chromatography – electron capture detection (GC/ECD). The procedure only needs dilution as sample pre-treatment and is therefore simple, fast and solvent-free. Eight fungicides (vinclozolin, procymidone, iprodione, penconazole, fenarimol, folpet, nuarimol and hexaconazole), one insecticide (chlorpyriphos) and two acaricides (bromopropylate and tetradifon) can be quantified. Good linearity was observed for all the compounds in the range 5–100 µg/L. The reproducibility of the measurements was found acceptable (with RSD’s below 20%). Detection limits of 11 µg/L, on average, are sufficiently below the proposed maximum residue limits (MRL’s) for these compounds in wine. The analytical method was applied to the determination of these compounds in Portuguese must and wine samples from the Demarcated Region of Alentejo, where any residues could be detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of intracellular reduced glutathione (GSH) in the lead stress response of Saccharomyces cerevisiae was investigated. Yeast cells exposed to Pb, for 3 h, lost the cell proliferation capacity (viability) and decreased intracellular GSH level. The Pb-induced loss of cell viability was compared among yeast cells deficient in GSH1 (∆gsh1) or GSH2 (∆gsh2) genes and wild-type (WT) cells. When exposed to Pb, ∆gsh1 and ∆gsh2 cells did not display an increased loss of viability, compared with WT cells. However, the depletion of cellular thiols, including GSH, by treatment of WT cells with iodoacetamide (an alkylating agent, which binds covalently to thiol group), increased the loss of viability in Pb-treated cells. In contrast, GSH enrichment, due to the incubation of WT cells with amino acids mixture constituting GSH (l-glutamic acid, l-cysteine and glycine), reduced the Pb-induced loss of proliferation capacity. The obtained results suggest that intracellular GSH is involved in the defence against the Pb-induced toxicity; however, at physiological concentration, GSH seems not to be sufficient to prevent the Pb-induced loss of cell viability.