3 resultados para Protocol design
em Instituto Politécnico do Porto, Portugal
Resumo:
Wireless body area networks (WBANs) are expected to play a significant role in smart healthcare systems. One of the most important attributes of WBANs is to increase network lifetime by introducing novel and low-power techniques on the energy-constrained sensor nodes. Medium access control (MAC) protocols play a significant role in determining the energy consumption in WBANs. Existing MAC protocols are unable to accommodate communication requirements in WBANs. There is a need to develop novel, scalable and reliable MAC protocols that must be able to address all these requirements in a reliable manner. In this special issue, we attracted high quality research and review papers on the recent advances in MAC protocols for WBANs.
Resumo:
The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.
Resumo:
IEEE International Conference on Communications (IEEE ICC 2015). 8 to 12, Jun, 2015, IEEE ICC 2015 - Communications QoS, Reliability and Modeling, London, United Kingdom.