72 resultados para Processing methods
em Instituto Politécnico do Porto, Portugal
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.
Resumo:
The Casa da Música Foundation, responsible for the management of Casa da Música do Porto building, has the need to obtain statistical data related to the number of building’s visitors. This information is a valuable tool for the elaboration of periodical reports concerning the success of this cultural institution. For this reason it was necessary to develop a system capable of returning the number of visitors for a requested period of time. This represents a complex task due to the building’s unique architectural design, characterized by very large doors and halls, and the sudden large number of people that pass through them in moments preceding and proceeding the different activities occurring in the building. To achieve the technical solution for this challenge, several image processing methods, for people detection with still cameras, were first studied. The next step was the development of a real time algorithm, using OpenCV libraries and computer vision concepts,to count individuals with the desired accuracy. This algorithm includes the scientific and technical knowledge acquired in the study of the previous methods. The themes developed in this thesis comprise the fields of background maintenance, shadow and highlight detection, and blob detection and tracking. A graphical interface was also built, to help on the development, test and tunning of the proposed system, as a complement to the work. Furthermore, tests to the system were also performed, to certify the proposed techniques against a set of limited circumstances. The results obtained revealed that the algorithm was successfully applied to count the number of people in complex environments with reliable accuracy.
Resumo:
It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
TLE in infancy has been the subject of varied research. Topographical and structural evidence is coincident with the neuronal systems responsible for auditory processing of the highest specialization and complexity. Recent studies have been showing the need of a hemispheric asymmetry for an optimization in central auditory processing (CAP) and acquisition and learning of a language system. A new functional research paradigm is required to study mental processes that require methods of cognitive-sensory information analysis processed in very short periods of time (msec), such as the ERPs. Thus, in this article, we hypothesize that the TLE in infancy could be a good model for topographic and functional study of CAP and its development process, contributing to a better understanding of the learning difficulties that children with this neurological disorder have.
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
O diagnóstico de doença hepática autoimune em doentes com patologia hepática implica a exclusão de outras causas de lesão hepática como vírica, alcoólica, tóxica, devido a alterações genéticas ou metabólicas, esteatose hepática não alcoólica e uma criteriosa avaliação de dados clínicos, bioquímicos, histológicos e colangiográficos especificas destas patologias (Invernizzi et al 2007) O diagnóstico e tratamento precoces destas patologias são fundamentais para a prevenção da alta morbilidade e mortalidade associada a estes doentes. O despiste de patologia hepática autoimune assenta na utilização de testes serológicos para a deteção de autoanticorpos associados a estas patologias. O conhecimento destes testes e a interpretação dos resultados obtidos revelam-se fundamentais para o diagnóstico ou exclusão destas doenças (Beuers 2005). Deste modo, foi objetivo deste trabalho a pesquisa e identificação de autoanticorpos em uso clínico: ANA, AMA, AML, ANCA, Anti-SLA/LP, anti-LKM, anti-LC1 e anti-actina F, em doentes com suspeita de HAI e CBP em que foi excluída causa vírica, alcoólica e tóxica. O trabalho incidiu particularmente na comparação dos resultados do perfil de autoanticorpos de pedidos feitos ao exterior com os resultados obtidos recorrendo à utilização de um novo kit de imunoblot, e assim determinar a relevância da introdução da pesquisa dos novos autoanticorpos e avaliar a relação custo/benefício da implementação do kit BlueDot liver da D-tek® na rotina laboratorial do serviço de Patologia Clínica do Hospital Pedro Hispano. Os resultados encontrados foram de 100% de concordância entre os métodos de imunofluorescência indireta e imunoblot, e Elisa e Imunoblot. Deste modo seria uma boa estratégia a implementação desta última técnica na rotina laboratorial uma vez que proporciona uma rápida disponibilização dos resultados para o clínico, antecipando desta forma o diagnóstico e o início rápido do tratamento em benefício do doente. Por outro lado, quando analisámos a relação custo/beneficio, seria vantajosa a implementação desta técnica uma vez que o laboratório dispõe de capacidade técnica, e o custo de aquisição do kit não excede o valor praticado atualmente correspondendo a uma poupança de 51%.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Objectives : The purpose of this article is to find out differences between surveys using paper and online questionnaires. The author has deep knowledge in the case of questions concerning opinions in the development of survey based research, e.g. the limits of postal and online questionnaires. Methods : In the physician studies carried out in 1995 (doctors graduated in 1982-1991), 2000 (doctors graduated in 1982-1996), 2005 (doctors graduated in 1982-2001), 2011 (doctors graduated in 1977-2006) and 457 family doctors in 2000, were used paper and online questionnaires. The response rates were 64%, 68%, 64%, 49% and 73%, respectively. Results : The results of the physician studies showed that there were differences between methods. These differences were connected with using paper-based questionnaire and online questionnaire and response rate. The online-based survey gave a lower response rate than the postal survey. The major advantages of online survey were short response time; very low financial resource needs and data were directly loaded in the data analysis software, thus saved time and resources associated with the data entry process. Conclusions : The current article helps researchers with planning the study design and choosing of the right data collection method.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.