63 resultados para Problems solving
em Instituto Politécnico do Porto, Portugal
Resumo:
A tradução tem sido tendenciosamente categorizada em dois grupos: a tradução de texto técnico e a tradução de texto literário. Contudo um determinado tipo de texto vem questionar essa separação sistemática: o texto filosófico. Apresentando tanto características de texto literário, devido ao seu estilo discursivo, como características de texto técnico, com uma forte presença de vocabulário técnico e específico, o texto filosófico apresenta-se como um híbrido entre texto literário e texto técnico. O que torna, portanto, este texto diferente das tipologias de tradução geralmente identificadas? Quais serão as implicações da tradução de um texto desse cariz? Quais serão os processos e metodologias subjacentes a essa tradução? A tradução para francês da obra Filosofia do Ritmo Portuguesa de Rodrigo Sobral Cunha, realizada no âmbito de um estágio na Editora e Livraria Portuguesa e Galega Orfeu, teve como principal objectivo responder a todas essas perguntas. Com base numa breve incursão teórica relativa ao texto filosófico, às suas características, à forma como diverge da separação clássica de texto técnico ou literário, sendo uma junção de ambos, e às implicações que essas características têm no processo de tradução, a tradução da obra de Rodrigo Sobral Cunha, em si, permitiu destacar uns processos e metodologias de tradução e de resolução de problemas ligados à mesma, adaptados à especificidade deste tipo de texto.
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
Locational Marginal Prices (LMP) are important pricing signals for the participants of competitive electricity markets, as the effects of transmission losses and binding constraints are embedded in LMPs [1],[2]. This paper presents a software tool that evaluates the nodal marginal prices considering losses and congestion. The initial dispatch is based on all the electricity transactions negotiated in the pool and in bilateral contracts. It must be checked if the proposed initial dispatch leads to congestion problems; if a congestion situation is detected, it must be solved. An AC power flow is used to verify if there are congestion situations in the initial dispatch. Whenever congestion situations are detected, they are solved and a feasible dispatch (re-dispatch) is obtained. After solving the congestion problems, the simulator evaluates LMP. The paper presents a case study based on the the 118 IEEE bus test network.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
Resumo:
The emergence of new business models, namely, the establishment of partnerships between organizations, the chance that companies have of adding existing data on the web, especially in the semantic web, to their information, led to the emphasis on some problems existing in databases, particularly related to data quality. Poor data can result in loss of competitiveness of the organizations holding these data, and may even lead to their disappearance, since many of their decision-making processes are based on these data. For this reason, data cleaning is essential. Current approaches to solve these problems are closely linked to database schemas and specific domains. In order that data cleaning can be used in different repositories, it is necessary for computer systems to understand these data, i.e., an associated semantic is needed. The solution presented in this paper includes the use of ontologies: (i) for the specification of data cleaning operations and, (ii) as a way of solving the semantic heterogeneity problems of data stored in different sources. With data cleaning operations defined at a conceptual level and existing mappings between domain ontologies and an ontology that results from a database, they may be instantiated and proposed to the expert/specialist to be executed over that database, thus enabling their interoperability.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.
Resumo:
Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One’s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSSs), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision-making process. In this way, it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services.
Resumo:
Mestrado em Engenharia Informática
Resumo:
O empreendedorismo social tem vindo, nas últimas décadas, a ser denominado como um novo paradigma determinante para o funcionamento da economia, em grande parte, porque a economia social tornou-se basilar na sociedade, por um lado, pelo crescimento exponencial da exclusão social, elevado desemprego e envelhecimento da população e, por outro, devido às dificuldades orçamentais dos governos. O empreendedorismo social, utilizado por Instituições Particulares de Solidariedade Social sem fins lucrativos, procura resolver problemas sociais de forma inovadora e sustentável, com a finalidade de dar resposta aos grandes desafios sociais da atualidade, através da ação social na prevenção e no apoio nas diversas situações de fragilidade, exclusão ou carência humana, promovendo a inclusão, a integração social e o desenvolvimento local. O objetivo fundamental do presente trabalho, pretende verificar até que ponto as IPSS podem ser definidas como empreendedores sociais, através da prestação de serviços, nas variadas áreas à população local, de forma a alcançar o valor social. Neste estudo enveredou-se pela metodologia qualitativa, utilizando o método do estudo de caso único, recorrendo ao questionário como instrumento de recolha de dados numa instituição particular de solidariedade social do concelho da Maia. Deste estudo foi possível concluir a IPSS tem uma proximidade às populações, através das diversas valências vocacionadas para a resolução de problemas sociais emergentes, promovendo a inclusão a integração social, e alcançar o valor social. Assim, consideramos a IPSS estudada como sendo parte integrante e promotora do empreendedorismo social.