3 resultados para Probabilistic methods

em Instituto Politécnico do Porto, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.