13 resultados para Printing in three-dimensional imaging
em Instituto Politécnico do Porto, Portugal
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
The widespread employment of carbon-epoxy laminates in high responsibility and severely loaded applications introduces an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Under this perspective, the availability of efficient repair methods is essential to restore the strength of the structure. The development and validation of accurate predictive tools for the repairs behaviour are also extremely important, allowing the reduction of costs and time associated to extensive test programmes. Comparing with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. This work reports on a numerical study of the tensile behaviour of three-dimensional scarf repairs in carbon-epoxy structures, using a ductile adhesive (Araldite® 2015). The finite elements analysis was performed in ABAQUS® and Cohesive Zone Modelling was used for the simulation of damage onset and growth in the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the specific adhesive mentioned. A parametric study was performed on the repair width and scarf angle. The use of over-laminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The obtained results allowed the proposal of design principles for repairing composite structures.
Resumo:
Introduction Myocardial Perfusion Imaging (MPI) is a very important tool in the assessment of Coronary Artery Disease ( CAD ) patient s and worldwide data demonstrate an increasingly wider use and clinical acceptance. Nevertheless, it is a complex process and it is quite vulnerable concerning the amount and type of possible artefacts, some of them affecting seriously the overall quality and the clinical utility of the obtained data. One of the most in convenient artefacts , but relatively frequent ( 20% of the cases ) , is relate d with patient motion during image acquisition . Mostly, in those situations, specific data is evaluated and a decisi on is made between A) accept the results as they are , consider ing that t he “noise” so introduced does not affect too seriously the final clinical information, or B) to repeat the acquisition process . Another possib ility could be to use the “ Motion Correcti on Software” provided within the software package included in any actual gamma camera. The aim of this study is to compare the quality of the final images , obtained after the application of motion correction software and after the repetition of image acqui sition. Material and Methods Thirty cases of MPI affected by Motion Artefacts and repeated , were used. A group of three, independent (blinded for the differences of origin) expert Nuclear Medicine Clinicians had been invited to evaluate the 30 sets of thre e images - one set for each patient - being ( A) original image , motion uncorrected , (B) original image, motion corrected, and (C) second acquisition image, without motion . The results so obtained were statistically analysed . Results and Conclusion Results obtained demonstrate that the use of the Motion Correction Software is useful essentiall y if the amplitude of movement is not too important (with this specific quantification found hard to define precisely , due to discrepancies between clinicians and other factors , namely between one to another brand); when that is not the case and the amplitude of movement is too important , the n the percentage of agreement between clinicians is much higher and the repetition of the examination is unanimously considered ind ispensable.
Resumo:
Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
Ainda antes da invenção da escrita, o desenho foi utilizado para descrever a realidade, tendo evoluído ao longo dos tempos, ganhando mais qualidade e pormenor e recorrendo a suportes cada vez mais evoluídos que permitissem a perpetuação dessa imagem: dessa informação. Desde as pinturas rupestres, nas paredes de grutas paleolíticas, passando pelos hieróglifos, nos templos egípcios, nas gravuras das escrituras antigas e nos quadros sobre tela, a intenção sempre foi a de transmitir a informação da forma mais directa e perceptível por qualquer indivíduo. Nos dias de hoje as novas tecnologias permitem aceder à informação com uma facilidade nunca antes vista ou imaginada, estando certamente ainda por descobrir outras formas de registar e perpetuar a informação para as gerações vindouras. A fotografia está na origem das grandes evoluções da imagem, permitindo capturar o momento, tornando-o “eterno”. Hoje em dia, na era da imagem digital, além de se mostrar a realidade, é possível incorporar na imagem informação adicional, de modo a enriquecer a experiência de visualização e a maximizar a aquisição do conhecimento. As possibilidades da visualização em três dimensões (3D) vieram dar o realismo que faltava ao formato de fotografia original. O 3D permite a imersão do espectador no ambiente que, a própria imagem retrata, à qual se pode ainda adicionar informação escrita ou até sensorial como, por exemplo, o som. Esta imersão num ambiente tridimensional permite ao utilizador interagir com a própria imagem através da navegação e exploração de detalhes, usando ferramentas como o zoom ou ligações incorporados na imagem. A internet é o local onde, hoje em dia, já se disponibilizam estes ambientes imersivos, tornando esta experiência muita mais acessível a qualquer pessoa. Há poucos anos ainda, esta prática só era possível mediante o recurso a dispositivos especificamente construídos para o efeito e que, por isso, apenas estavam disponíveis a grupos restritos de utilizadores. Esta dissertação visa identificar as características de um ambiente 3D imersivo e as técnicas existentes e possíveis de serem usadas para maximizar a experiência de visualização. Apresentar-se-ão algumas aplicações destes ambientes e sua utilidade no nosso dia-a-dia, antevendo as tendências futuras de evolução nesta área. Serão apresentados exemplos de ferramentas para a composição e produção destes ambientes e serão construídos alguns modelos ilustrativos destas técnicas, como forma de avaliar o esforço de desenvolvimento e o resultado obtido, comparativamente com formas mais convencionais de transmitir e armazenar a informação. Para uma avaliação mais objectiva, submeteram-se os modelos produzidos à apreciação de diversos utilizadores, a partir da qual foram elaboradas as conclusões finais deste trabalho relativamente às potencialidades de utilização de ambientes 3D imersivos e suas mais diversas aplicações.
Resumo:
Three commonly consumed and commercially valuable fish species (sardine, chub and horse mackerel) were collected from the Northeast and Eastern Central Atlantic Ocean in Portuguese waters during one year. Mercury, cadmium, lead and arsenic amounts were determined in muscles using graphite furnace and cold vapour atomic absorption spectrometry. Maximum mean levels of mercury (0.1715 ± 0.0857 mg/kg, ww) and arsenic (1.139 ± 0.350 mg/kg, ww) were detected in horse mackerel. The higher mean amounts of cadmium (0.0084 ± 0.0036 mg/kg, ww) and lead (0.0379 ± 0.0303 mg/kg, ww) were determined in chub mackerel and in sardine, respectively. Intra- and inter-specific variability of metals bioaccumulation was statistically assessed and species and length revealed to be the major influencing biometric factors, in particular for mercury and arsenic. Muscles present metal concentrations below the tolerable limits considered by European Commission Regulation and Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). However, estimation of non-carcinogenic and carcinogenic health risks by the target hazard quotient and target carcinogenic risk, established by the US Environmental Protection Agency, suggests that these species must be eaten in moderation due to possible hazard and carcinogenic risks derived from arsenic (in all analyzed species) and mercury ingestion (in horse and chub mackerel species).
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.