8 resultados para Preemptive analgesia
em Instituto Politécnico do Porto, Portugal
Resumo:
In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive and preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delay but its schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delay, but benefits from a higher flexibility in the scheduling decisions. The time-delay involved by task preemptions is a major source of pessimism in the analysis of the task Worst-Case Execution Time (WCET) in real-time systems. Preemptive scheduling policies including non-preemptive regions are a hybrid solution between non-preemptive and fully preemptive scheduling paradigms, which enables to conjugate both world's benefits. In this paper, we exploit the connection between the progression of a task in its operations, and the knowledge of the preemption delays as a function of its progression. The pessimism in the preemption delay estimation is then reduced in comparison to state of the art methods, due to the increase in information available in the analysis.
Resumo:
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the operational safety. These high criticality systems require strict compliance with the offline predicted task execution time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance of this work.
The utilization bound of non-preemptive rate-monotonic scheduling in controller area networks is 25%
Resumo:
Consider a distributed computer system comprising many computer nodes, each interconnected with a controller area network (CAN) bus. We prove that if priorities to message streams are assigned using rate-monotonic (RM) and if the requested capacity of the CAN bus does not exceed 25% then all deadlines are met.
Resumo:
This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.
Resumo:
It is widely assumed that scheduling real-time tasks becomes more difficult as their deadlines get shorter. With deadlines shorter, however, tasks potentially compete less with each other for processors, and this could produce more contention-free slots at which the number of competing tasks is smaller than or equal to the number of available processors. This paper presents a policy (called CF policy) that utilizes such contention-free slots effectively. This policy can be employed by any work-conserving, preemptive scheduling algorithm, and we show that any algorithm extended with this policy dominates the original algorithm in terms of schedulability. We also present improved schedulability tests for algorithms that employ this policy, based on the observation that interference from tasks is reduced when their executions are postponed to contention-free slots. Finally, using the properties of the CF policy, we derive a counter-intuitive claim that shortening of task deadlines can help improve schedulability of task systems. We present heuristics that effectively reduce task deadlines for better scheduability without performing any exhaustive search.
Resumo:
Preemptions account for a non-negligible overhead during system execution. There has been substantial amount of research on estimating the delay incurred due to the loss of working sets in the processor state (caches, registers, TLBs) and some on avoiding preemptions, or limiting the preemption cost. We present an algorithm to reduce preemptions by further delaying the start of execution of high priority tasks in fixed priority scheduling. Our approaches take advantage of the floating non-preemptive regions model and exploit the fact that, during the schedule, the relative task phasing will differ from the worst-case scenario in terms of admissible preemption deferral. Furthermore, approximations to reduce the complexity of the proposed approach are presented. Substantial set of experiments demonstrate that the approach and approximations improve over existing work, in particular for the case of high utilisation systems, where savings of up to 22% on the number of preemption are attained.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.