3 resultados para Predicate encryption

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is difficult to get the decision about an opinion after many users get the meeting in same place. It used to spend too much time in order to find solve some problem because of the various opinions of each other. TAmI (Group Decision Making Toolkit) is the System to Group Decision in Ambient Intelligence [1]. This program was composed with IGATA [2], WebMeeting and the related Database system. But, because it is sent without any encryption in IP / Password, it can be opened to attacker. They can use the IP / Password to the bad purpose. As the result, although they make the wrong result, the joined member can’t know them. Therefore, in this paper, we studied the applying method of user’s authentication into TAmI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.