73 resultados para Pre-processing step

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

XML Schema is one of the most used specifications for defining types of XML documents. It provides an extensive set of primitive data types, ways to extend and reuse definitions and an XML syntax that simplifies automatic manipulation. However, many features that make XML Schema Definitions (XSD) so interesting also make them rather cumbersome to read. Several tools to visualize and browse schema definitions have been proposed to cope with this issue. The novel approach proposed in this paper is to base XSD visualization and navigation on the XML document itself, using solely the web browser, without requiring a pre-processing step or an intermediate representation. We present the design and implementation of a web-based XML Schema browser called schem@Doc that operates over the XSD file itself. With this approach, XSD visualization is synchronized with the source file and always reflects its current state. This tool fits well in the schema development process and is easy to integrate in web repositories containing large numbers of XSD files.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A presente tese tem como principal objetivo a comparação entre dois software de CFD (Computer Fluid Dynamics) na simulação de escoamentos atmosféricos com vista à sua aplicação ao estudo e caracterização de parques eólicos. O software em causa são o OpenFOAM (Open Field Operation and Manipulation) - freeware open source genérico - e o Windie, ferramenta especializada no estudo de parques eólicos. Para este estudo foi usada a topografia circundante a um parque eólico situado na Grécia, do qual dispúnhamos de resultados de uma campanha de medições efetuada previamente. Para este _m foram usados procedimentos e ferramentas complementares ao Open-FOAM, desenvolvidas por da Silva Azevedo (2013) adequados para a realização do pré-processamento, extração de dados e pós-processamento, aplicados na simulação do caso pratico. As condições de cálculo usadas neste trabalho limitaram-se às usadas na simulação de escoamentos previamente simulados pelo software Windie: condições de escoamento turbulento, estacionário, incompressível e em regime não estratificado, com o recurso ao modelo de turbulência RaNS (Reynolds-averaged Navier-Stokes ) k - E atmosférico. Os resultados de ambas as simulações - OpenFOAM e Windie - foram comparados com resultados de uma campanha de medições, através dos valores de speed-up e intensidade turbulenta nas posições dos anemómetros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Temporal lobe epilepsy (TLE) is a neurological disorder that directly affects cortical areas responsible for auditory processing. The resulting abnormalities can be assessed using event-related potentials (ERP), which have high temporal resolution. However, little is known about TLE in terms of dysfunction of early sensory memory encoding or possible correlations between EEGs, linguistic deficits, and seizures. Mismatch negativity (MMN) is an ERP component – elicited by introducing a deviant stimulus while the subject is attending to a repetitive behavioural task – which reflects pre-attentive sensory memory function and reflects neuronal auditory discrimination and perceptional accuracy. Hypothesis: We propose an MMN protocol for future clinical application and research based on the hypothesis that children with TLE may have abnormal MMN for speech and non-speech stimuli. The MMN can be elicited with a passive auditory oddball paradigm, and the abnormalities might be associated with the location and frequency of epileptic seizures. Significance: The suggested protocol might contribute to a better understanding of the neuropsychophysiological basis of MMN. We suggest that in TLE central sound representation may be decreased for speech and non-speech stimuli. Discussion: MMN arises from a difference to speech and non-speech stimuli across electrode sites. TLE in childhood might be a good model for studying topographic and functional auditory processing and its neurodevelopment, pointing to MMN as a possible clinical tool for prognosis, evaluation, follow-up, and rehabilitation for TLE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.