2 resultados para Post-race recovery strategy

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and implementation of measures which promote the reduction of the impacts of forest fires on soils is imperative and should be part of any strategy for forest and soil preservation and recovery, especially considering the actual scenario of continuous growth in the number of fires and burnt area. Consequently, with the dendrocaustologic reality that has characterized the Portuguese mainland in recent decades, a research project promoted by the Center for the Study of Geography and Spatial Planning (CEGOT) was implemented with the objective of applying several erosion mitigation measures in a burned area of the Peneda-Geres National Park in NW Portugal. This paper therefore seeks to present the measures applied in the study area within the project Soil Protec, relating to triggered channel processes and the results of preliminary observations concerning the evaluation of the effectiveness of erosion mitigation measures implemented, as well as their cost/benefit ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.